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ABSTRACT

Static analysis techniques for buffer overflow detection still struggle

with being scalable for millions of lines of code, while being precise

enough to have an acceptable false positive rate. The checking of

buffer overflow necessitates reasoning about the heap reachability

and numerical relations, which are mutually dependent. Existing

techniques to resolve the dependency cycle either sacrifice precision

or efficiency due to their limitations in reasoning about symbolic

heap location, i.e., heap location with possibly symbolic numerical

offsets. A symbolic heap location potentially aliases a large number

of other heap locations, leading to a disjunction of heap states that

is particularly challenging to reason precisely.

Acknowledging the inherent difficulties in heap and numerical

reasoning, we introduce a disjointness assumption into the analy-

sis by shrinking the program state space so that all the symbolic

locations involved in memory accesses are disjoint from each other.

The disjointness property permits strong updates to be performed

at symbolic heap locations, significantly improving the precision by

incorporating numerical information in heap reasoning. Also, it aids

in the design of a compositional analysis to boost scalability, where

compact and precise function summaries are efficiently generated

and reused. We implement the idea in the static buffer overflow

detector Cod. When applying it to large, real-world software such

as PHP and QEMU, we have uncovered 29 buffer overflow bugs

with a false positive rate of 37%, while projects of millions of lines

of code can be successfully analyzed within four hours.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.

KEYWORDS

Static analysis, bug detection, buffer overflow.

ACM Reference Format:

Yiyuan Guo, Peisen Yao, and Charles Zhang. 2024. Precise Compositional

Buffer Overflow Detection via Heap Disjointness. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3652110

(ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3650212.3652110

1 INTRODUCTION

Thirty-five years after the Morris worm, buffer overflow remains

a largely unsolved problem today, causing severe threats to the

correctness and safety of software. As an example, OpenSSL, one

of the foundational building blocks for secure computing over the

Internet, suffers from buffer overflow bugs constantly: the notorious

Heartbleed vulnerability [70] affected two-thirds of Web servers

in 2014, and critical buffer overflows capable of “Heartbleed level

damage” are still being patched recently in OpenSSL [55].

While dynamic analysis, such as fuzzing, has helped detect

a large number of buffer overflows in the wild (e.g., over 10000

overflow-induced crashes were found by OSSFuzz [62]), static anal-

ysis for buffer overflow has made very limited progress in the

past decade. The most recent effort [48] of this line of work scaled

to large programs at the cost of essentially giving up the precise

reasoning of pointers. However, the ever-growing size of modern

software requires static buffer overflow detection to go through

millions of lines of code, doing so in a matter of hours, and detecting

bugs hidden behind deep and complex dataflow [3, 24] with a low

false positive rate.

1.1 Problem: Mutually Dependent Properties

The static analysis of buffer overflow needs to reason about both

the heap reachability (where the accessed pointer points to) and

numerical relations (the offset value of memory location w.r.t the

bound of the pointed memory object). While each aspect on its own

is already challenging, the two properties could be mutually depen-

dent such that imprecision from one side significantly affects the

other, leading to false positive reports in buffer overflow detection.

We use the code in Fig. 1 for illustration. A buffer buf of size SZ
is allocated at Line 10 and the statements at Line 13 and 14 accesses

buf at index 0 and SZ respectively. Hence, Line 13 is safe but Line
14 triggers an off-by-one buffer overrun.

Let’s consider how should the static analyzer handle the function

set_mem. The function stores at the heap location &ar[x], which
may or may not overwrite the content at &ar[0] depending on

the numerical value of x (Line 7 of Fig. 1). Indeed, reasoning the

innately unbounded heap [37] requires numerical information to

perform strong updates [66], which is critical for the precision

[21]. Meanwhile, analysis of the numerical relations necessitates

a model of the heap to resolve memory dependencies [26, 27]. To

determine the numerical value for the variables t1 and t2 at Line
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12, heap reasoning is required to infer the possible values loaded

from &buf[0] and &buf[1].
To precisely account for the mutual dependence between the

heap and the numerical values, the analysis needs to distinguish

among symbolic heap locations, i.e., heap locations with symbolic

numerical offsets. Essentially, we need to reason about a disjunction

of heap states based on the numerical information, e.g., storing to

&ar[0] and &ar[x] at Line 7 of Fig. 1 results in two different heap

states depending on whether x=0. Such disjunctive heap reasoning

is crucial in our example to avoid false positive: if &ar[0] and

&ar[x] are not distinguished, then it is conservatively inferred that

t1, t2 ∈ {0, 1} after the call to set_mem at Line 11, leading to a

false positive report of buffer underrun at Line 13 (the index t1-1
may equal −1). However, existing works exhibit a tension between

precision and efficiency regarding such disjunctive reasoning about

heap states, which we now describe in detail.

Conservative memory model hurts the precision. To break

the dependency cycle, most existing approaches [28, 45, 48, 51, 71,

75] either abandon the reasoning of pointers entirely [71, 75] or

take a layered approach: an off-the-shelf pointer analysis is utilized

to disambiguate indirect memory references before performing the

numerical analysis [28, 45, 48, 51]. Their memorymodels are conser-

vative for being oblivious to the numerical state of the program: the

set of symbolic heap locations derived from the same base address

is approximated with a summary location even though they may

have diverse numerical offsets, essentially joining the disjunction

of heap states into a sound over-approximation. This approach is

efficient but can lead to significant imprecision, e.g., &ar[0] and

&ar[x] at Line 7 of Fig. 1 are treated as aliases.

Although several static analyzers [6, 53] adopt a product domain

where the numerical and heap states are updated together during

abstract interpretation [17], they do not utilize the numerical state

to materialize [60] the heap abstraction for disjunctive reasoning.

Instead, states for symbolic heap locations such as &ar[0] and

&ar[x] are also conservatively joined.

Precise symbolic methods hurts the performance. To pre-

cisely analyze set_mem, a case split over the heap abstraction is

needed to produce the two heap states shown in Fig. 2a based on

the value of x, which results in an exponential blow-up if more heap

operations were performed [22]. Methods based on symbolic model

checking implicitly perform the disjunctive reasoning of heap states

by encoding the semantics of loading and storing at symbolic heap

locations with logical constraints, e.g., the array theory [8, 34, 57]

and the index qualifying constraints for the points-to edges [21]

(an example is shown in Fig. 2b). The constraints serve as verifica-

tion conditions, which may eventually lead to a similar disjunctive

explosion in the solver. For example, decision procedures for the

array theory may need to perform massive case analyses for the

numerical indices to instantiate the array axioms [29, 65], causing

high-performance overhead. Despite the recent advances in opti-

mizing constraint solving [30, 56, 65, 77], these techniques are still

better suited for the formal verification of small- or medium-sized

programs instead of detecting bugs in large codebases.

1 int∗ mem_alloc(unsigned sz) {

2 int ∗buf = malloc(sizeof(int) ∗ sz);

3 return buf;

4 }

5 #define SZ 100

6 void set_mem(int ∗ar, int x) {

7 ar[0] = x; ar[x] = 0;

8 }

9 void baz(int arg) {

10 int ∗buf = mem_alloc(SZ);

11 set_mem(buf, 1);

12 int t1 = buf[0], t2 = buf[1];

13 buf[t1−1] = 0;

14 buf[t2+SZ] = 0;

15 }

Figure 1: A motivating example.

1.2 Our Goal And Solution

In this paper, we make no claims about resolving the innate difficul-

ties of the verification for heap and numerical properties. Inspired

by the recent success of under-approximate static analysis in bug

catching of real systems [5, 44], our goal is to design a practical

static analysis that efficiently finds a subset of buffer overflow bugs

with flow-, context-, and path-sensitivity, while capable of distin-

guishing various symbolic heap locations.

Our key insight is that while precisely reasoning about the mem-

ory operations at symbolic heap locations can involve a large dis-

junction of heap states, the static analysis can focus on a subset

of the disjunction where the tracked symbolic heap locations are

pairwise disjoint. Indeed, the need for case splits over the heap

abstraction stems from the potential aliasing among the heap loca-

tions [4], i.e., different aliasing patterns need to be considered when

handling memory operations. The disjointness property boosts

both the precision and efficiency of our analysis:

• Without needing any case analysis, strong updates are enabled

to symbolic heap locations to improve the precision of heap

reasoning, which, in turn, benefits the analysis of numerical

relations [21, 26]. In Fig. 1, because the heap locations &ar[x] and
&ar[0]may be disjoint, we assume their disjointness and exclude

the program executions with 𝑥 = 0 to allow strong updates

at Line 7. Essentially, we compute an under-approximation as

shown by the dashed rectangle in Fig. 2a.

• A summary-based compositional analysis [63] can be designed

to significantly improve the efficiency by generating and reusing

function summaries. Thanks to the disjointness, our summary is

compact and does not need to encode the exponential number

of possible aliasing patterns from the function’s environment

[23]. For instance, the summary of set_mem tracks states for

the symbolic heap locations &ar[x] and &ar[0] independently,
whose instantiation in baz precisely infers that t1 == 1 and

t2 == 0, avoiding producing false report for Line 13.

Analysis Design. At a high level, we perform a bottom-up,

summary-based compositional analysis in the style of symbolic

execution, exploiting the disjointness property to perform strong

updates at symbolic heap locations. Specifically, we propose a sym-

bolic memory model that incorporates numerical information in

heap reasoning to identify must-alias pairs of symbolic heap loca-

tions, and assume two symbolic heap locations to be disjoint if they

are not must-aliases. To coordinate the disjointness property with

the compositional analysis, our function summary is predicated on

the disjointness assumptions introduced during summary genera-

tion. The disjointness assumptions are carefully validated before

applying the summary because they can be disproved by newly

discovered aliasing at the call site. Formally, the analysis forms an
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𝑥, 0

0 : 𝑥 𝑥 : 0

0 : 0 ?

𝑥 ≠ 0

𝑥 = 0

(a)

𝑎𝑟𝑟𝑎𝑦 = 𝑛𝑒𝑤𝑆𝑜𝑙𝑣𝑒𝑟𝐴𝑟𝑟𝑎𝑦 ()
𝑎𝑟𝑟𝑎𝑦′ = 𝑠𝑡𝑜𝑟𝑒 (𝑎𝑟𝑟𝑎𝑦, 0, 𝑥)
𝑎𝑟𝑟𝑎𝑦′′ = 𝑠𝑡𝑜𝑟𝑒 (𝑎𝑟𝑟𝑎𝑦′, 𝑥, 0)

(b)

Figure 2: (a) A disjunction of heap states for precisely ana-

lyzing set_mem. The shaded node denotes a summary heap

location containing a value of either 𝑥 or 0. The case split

produces two distinct heap states depending on whether 𝑥

equals 0, e.g., the heap stores the value 𝑥 at the offset 0 and

0 at the offset 𝑥 when 𝑥 ≠ 0. (b) Array theory constraints to

implicitly encode the disjunctive heap states.

Type 𝜏 ::= int | ptr(𝜏)
Variables𝑉 = 𝑉𝐼 ∪𝑉𝑃 Program locations 𝐿𝑜𝑐 ⊇ 𝐴𝑙𝑙𝑜𝑐

Arithmetic expression 𝑒𝑎 ::= 𝑐 | 𝑣 ∈ 𝑉𝐼 | 𝑣1 op 𝑣2, 𝑣𝑖 ∈ 𝑉𝐼
Pointer expression 𝑒𝑝 ::= 𝑣 ∈ 𝑉𝑃 | 𝑏 + 𝑜,𝑏 ∈ 𝑉𝑃 , 𝑜 ∈ 𝑉𝐼

| 𝑎𝑙𝑙𝑜𝑐𝑙 (𝜏, 𝑣), 𝑣 ∈ 𝑉𝐼 , 𝑙 ∈ 𝐴𝑙𝑙𝑜𝑐

Program 𝑃 ::= F+

Func 𝐹 ::= define 𝑓 (𝑣1, ..., 𝑣𝑛) = {𝑆 }, 𝑣𝑖 ∈ 𝑉

Statement 𝑆 ::= 𝑣 := 𝑒𝑎 | 𝑣 := 𝑒𝑝
| ∗𝑣 := 𝑘 | 𝑘 := ∗𝑣, 𝑘 ∈ 𝑉 , 𝑣 ∈ 𝑉𝑃
| 𝑎𝑠𝑠𝑢𝑚𝑒 (𝑣1 < 𝑣2), 𝑣𝑖 ∈ 𝑉𝐼

| 𝑓 𝑙 (𝑎1, · · · 𝑎𝑛), 𝑎𝑖 ∈ 𝑉 , 𝑙 ∈ 𝐿𝑜𝑐

| 𝑆1;𝑆2 | 𝑛𝑜𝑛𝑑𝑒𝑡 (𝑆1, 𝑆2)
Figure 3: A simple programming language.

under-approximation of an over-approximation [32] that trades

soundness for precision and efficiency (detailed in § 3- § 5).

We implement the idea in Cod and perform an extensive eval-

uation on real-world software. The result shows that Cod is both

precise and scalable: 29 buffer overflow bugs are uncovered from

large and well-known codebases such as PHP with a false positive

rate of 37%, while projects of millions of lines of code can be suc-

cessfully analyzed within four hours. Fifteen of the bugs detected

by Cod have been confirmed by the developers, with three CVE

IDs assigned. Compared with four state-of-the-art static analyzers

(Ikos [7], Symbiotic [12], Clang Static Analyzer (CSA) [1] and Infer

[9]), Cod achieves close to 3× precision improvement or up to 120×
speedups since they either lead to a false positive rate of over 90%

or cannot terminate after twelve hours. In summary, we make the

following contributions:

• A symbolic memory model that leverages numerical information

to distinguish heap locations and introduces the disjointness

assumption, resolving the mutual dependence between the heap

and numerical values in a precise and efficient manner.

• A path-sensitive and compositional static analysis algorithm for

buffer overflow detection that is both precise and scalable.

• An implementation and evaluation of the idea to empirically

demonstrate our improvement.

2 PRELIMINARIES

We formalize our approach using the language in Fig. 3. A variable

𝑣 in the program is either an integer (𝑣 ∈ 𝑉𝐼 ) or a pointer (𝑣 ∈ 𝑉𝑃 ),

whose type is denoted by 𝑡𝑦𝑝𝑒 (𝑣). Arithmetic expression encodes

numerical computations over integer variables. Array and dynamic

memory allocation are uniformly represented by 𝑎𝑙𝑙𝑜𝑐𝑙 (𝜏, 𝑣), indi-
cating that an object with the size 𝑣 is allocated at 𝑙 ∈ 𝐴𝑙𝑙𝑜𝑐 . 𝑏 + 𝑜
denotes a pointer arithmetic expression with base pointer 𝑏 and

numerical offset 𝑜 . Heap operations are carried out through the

load and store statements. Other statements include assumption,

sequencing, non-deterministic choice (represented by 𝑛𝑜𝑛𝑑𝑒𝑡 ), and

function calls (represented by 𝑓 𝑙 (𝑎1, · · ·𝑎𝑛), where 𝑙 ∈ 𝐿𝑜𝑐 is the

call site location). In this work, we assume that loops in the control

flow graph and call graph are finitely unrolled, similar to previous

works on static bug detection [2, 64, 69, 73].

In order to uniformly encode the numerical values and heap

locations, we define symbolic access path, generalizing access path

[66] by embedding numerical offsets:

Definition 2.1. (Symbolic Access Path / Symbolic Heap Location)

A numeric value 𝑣𝑎 is 𝑣𝑎 ∈ Γ ::= 𝑣 ∈ 𝑆𝑦𝑚𝑉𝑎𝑟 | 𝑣𝑎1 ôp 𝑣𝑎2, where

𝑆𝑦𝑚𝑉𝑎𝑟 is the set of symbolic variables (for convenience, assume

any constant 𝑐 ∈ 𝑆𝑦𝑚𝑉𝑎𝑟 ) and ôp corresponds to the binary opera-

tion used by the language in Fig. 3.

A symbolic access path is 𝜋 ∈ 𝐴𝑐𝑐 ::= 𝑣𝑎 ∈ Γ | 𝑙+ (𝑠𝑧) | 𝑝𝑎𝑟𝑖 | 𝜋 +
off, off ∈ Γ | ∗ 𝜋 , where 𝜋 can be of either integer (e.g., 𝑣𝑎 ∈ Γ) or
pointer type (in which case 𝜋 is a symbolic heap location).

𝑙+ (𝑠𝑧) denotes a memory object with the context-sensitive al-

location site 𝑙+ (𝑙 ∈ 𝐴𝑙𝑙𝑜𝑐) and size 𝑠𝑧 ∈ Γ, while 𝑝𝑎𝑟𝑖 denotes

the value of the 𝑖-th function parameter. More complex symbolic

access path can be obtained by adding a numerical offset off ∈ Γ or

performing a dereference. We say 𝜋 is degenerated if no variable

in 𝑆𝑦𝑚𝑉𝑎𝑟 appears in 𝜋 , i.e., 𝜋 involves no symbolic offset and can

be identified with a conventional access path.

A symbolic heap location can refer to different locations under

different program executions:

Definition 2.2. (Concretization of Symbolic Heap Location) Given

the analysis state 𝜎 , 𝛾 (𝜋, 𝜎) ∈ ℘(𝐴𝑐𝑐) is the set of heap locations

represented by 𝜋 under 𝜎 , where all 𝜋0 ∈ 𝛾 (𝜋, 𝜎) are degenerated.
We defer the formal definitions for 𝜎 and 𝛾 to § 4.

Example 2.1. Let 𝜋 be the symbolic heap location corresponding

to &ar[x] in Fig. 1. Analyzing the function set_mem alone, 𝛾 (𝜋, 𝜎)
denotes all the possible locations {𝑎𝑟, 𝑎𝑟 + 4, 𝑎𝑟 + 8, . . .} from the

array (assuming sizeof(int) = 4). Meanwhile, analyzing set_mem
with its only call site at Line 11, 𝛾 (𝜋, 𝜎) denotes the single array
element &ar[1] because the numerical state indicates that x=1.

3 OVERVIEW

This section describes how we use the disjointness assumptions

to achieve precision and efficiency, as well as the challenges in

establishing the disjointness property ( § 3.1). Then, we outline how

we address these challenges in § 3.2 and § 3.3.

3.1 Problem Statement

Our analysis utilizes disjointness assumptions to precisely analyze

a subset of the state space that permits strong updates. This helps to

avoid the expensive case analyses normally required for precisely

handling symbolic heap locations and also simplifies the design of

the compositional analysis.

Running Example. We illustrate our approach using the exam-

ple in Fig. 1, which consists of summary generation and application.

As shown in Fig. 4, the summary of mem_alloc signifies that a new
memory object is allocated at Line 2 (𝑙2), has allocation size of four

times its first parameter (4𝑝𝑎𝑟1), and is returned to the caller (𝑟𝑒𝑡 ).
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𝑟𝑒𝑡 ▷ 𝑙2(4𝑝𝑎𝑟1)

mem_alloc baz

set_mem

𝑝𝑎𝑟1(⊤) 𝑝𝑎𝑟2

𝑝𝑎𝑟1 + 4𝑝𝑎𝑟2 0

buf ▷ 𝑙10 ∷ 𝑙2 (4SZ)
Line 10

Line 11-12

4𝑝𝑎𝑟2 ≠ 0 4 ≠ 0

Buffer safety check:
Line 13: buf[t1-1]         ✓
Line 14: buf[t2+SZ]      ✖

①

②

③Generated summaries

&t1 ▷ 𝑙10 ∷ 𝑙2 (4SZ) 1

&t2 ▷ 𝑙10 ∷ 𝑙2 + 4 0

Figure 4: Demonstration of Cod on the code of Fig. 1. The left

part illustrates the generated summaries for mem_alloc and
set_mem, and the right part shows how the analysis of baz
applies the summaries. 𝑒 ⊲ 𝜋1 → 𝜋2 denotes that the expres-

sion 𝑒 contains the value of 𝜋1 that points to 𝜋2. Disjointness

assumptions are marked with dashed rectangles.

Meanwhile, the summary of set_mem suggests that the memory

object pointed by its first parameter has an unknown size (denoted

by 𝑝𝑎𝑟1 (⊤)), but stores 𝑝𝑎𝑟2 at the offset zero and zero at the offset
4𝑝𝑎𝑟2.

Notably, during the analysis of set_mem, we introduce the dis-
jointness assumption 4𝑝𝑎𝑟2 ≠ 0, which allows strong updates to

the heap locations &ar[0] (𝑝𝑎𝑟1) and &ar[x] (𝑝𝑎𝑟1 + 4𝑝𝑎𝑟2) at Line
7 and yields a precise summary. Also, the disjointness assump-

tion frees us from enumerating possible aliasing patterns from the

function’s environment and makes the summary compact.

Next, when we analyze the function baz, we apply the sum-

maries of mem_alloc and set_mem respectively at step 1 and 2

of Fig. 4: the analysis infers that the memory object pointed by

buf is allocated by the call stack {Line 10, Line2} with size 4SZ
(𝑙10 :: 𝑙2 (4SZ)), and stores 1 at the offset zero and zero at the offset

4. By enforcing disjointness and distinguishing symbolic heap loca-

tions, our analysis is able to correctly report the bug at Line 14 and

avoid the false positive at Line 13 in step 3 of Fig. 4.

Challenges. The central problem of our analysis is to strengthen

the analysis state 𝜎0 to 𝜎 by actively introducing disjointness as-

sumptions such that the disjointness property holds at 𝜎 :

Definition 3.1. (Disjointness Property) Given the analysis state 𝜎

and the set of symbolic heap locations {𝜋1, . . . , 𝜋𝑛} tracked by 𝜎 , 𝜎

satisfies the disjointness property if ∀𝑖 ≠ 𝑗 . 𝛾 (𝜋𝑖 , 𝜎) ∩ 𝛾 (𝜋 𝑗 , 𝜎) = ∅.
Apparently, storing to 𝜋𝑖 does not change the state for 𝜋 𝑗 with

the disjointness property, even though each may refer to many

concrete heap locations. When the disjointness property holds, we

say strong updates are allowed on {𝜋1, . . . , 𝜋𝑛} under 𝜎 .

Unfortunately, effectively establishing the disjointness property

is non-trivial: It is hard to efficiently determine whether two sym-

bolic heap locations may be disjoint such that their disjointness

can be enforced. In particular, there are two main challenges:

Checking disjointness is costly. Deciding the disjointness between
symbolic heap locations is difficult and can involve an unbounded

number of heap locations. While we can encode the condition in

Definition 3.1 as an extra constraint

∧
𝑖≠𝑗,1≤𝑖, 𝑗≤𝑛 𝜋𝑖 ≠ 𝜋 𝑗 , solving

it would require analyzing various cases for the numerical offsets

𝑁𝑢𝑚𝐸𝑛𝑣 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒

x ↦→ 𝑥
ar ↦→ 𝑥,

ar + 4𝑥 ↦→ 0

(a)

Before 𝑁𝑢𝑚𝐸𝑛𝑣 After

ar + 4x [x ↦→ 𝑥] ar + 4𝑥

buf + 4(t1 − 1) [t1 ↦→ 1] buf

(b)

Figure 5: (a) Our symbolic memory model built for set_mem
of Fig. 1. 𝑁𝑢𝑚𝐸𝑛𝑣 and 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 denote the numerical envi-

ronment and the abstract store respectively. (b) On the fly

construction of symbolic access paths based on the numeri-

cal environment, for &ar[x] and &buf[t1-1] in Fig. 1.

of {𝜋1, . . . , 𝜋𝑛}. This contradicts our goal of using disjointness as-
sumptions to avoid expensive case analyses. Additionally, the size

of the extra constraint is quadratic to the number of symbolic heap

locations, further impacting performance.

Inter-procedural disjointness assumption propagation is costly. In
a compositional analysis, where each function is analyzed inde-

pendently of its calling contexts, the disjointness assumptions in-

troduced during summary generation need to be validated before

applying the summary. These assumptions can either be refuted

by newly discovered aliasing at the call site or further propagated

into the caller’s context. However, the validation overhead can be

significant since the analysis needs to frequently apply summaries,

and the number of possible aliasing patterns from a function’s

environment is exponential [23].

3.2 Approximating Disjointness Property

To check disjointness efficiently, our main idea is to leverage numer-

ical information in heap reasoning to efficiently identify must-alias
pairs of symbolic heap locations. We assume two symbolic heap

locations to be disjoint only if they are not must-aliases.

Symbolic Memory Model for Identifying Must Aliases. It

is challenging to determine when to introduce the disjointness

assumption, as illustrated by the following example.

Example 3.1. Consider the following code snippet:
define f(n:int , x:int) = {p=alloc𝑙1 (int , 8); y = x-1; ...}

It is reasonable to assume that p+n and p+x are disjoint since the
values for x and n are unknown. However, it would be wrong

to assume the disjointness between p+x and p+y+1, because the
numerical relation y=x-1 indicates that they must alias each other.

We propose a symbolic memory model that judiciously incorpo-

rates numerical information in heap reasoning. Specifically, we use

the numerical environment, i.e., the mapping between numerical

variables and their symbolic values, to compute symbolic access

paths for heap locations, but ignore any constraint enforced by

the branch conditions. Two heap locations are determined to be

must-aliases if their corresponding symbolic access paths are syn-
tactically equivalent, otherwise we assume they are disjoint. For

instance, in Ex. 3.1, (p+x, p+y+1) are must-aliases for sharing the

same symbolic access path 𝑙1 + 4𝑥 assuming that x has the value

𝑥 ∈ Γ in the numerical environment.

Example 3.2. Fig. 5a shows our symbolic memory model for

the function set_mem of Fig. 1, where we efficiently establish the

disjointness property. The symbolic heap locations ar + 4𝑥 and ar

are assumed to be disjoint because they are syntactically different

(𝑥 denotes the unknown symbolic value for the parameter x). Notice
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that we have performed strong updates to these heap locations to

build a precise and compact abstract store.

Fig. 5b illustrates the construction of symbolic access paths for

heap locations based on the numerical environment. For example,

&buf[t1-1] (i.e., buf+ 4(t1− 1)) is evaluated to &buf[0] under the
numerical environment [t1 ↦→ 1] at Line 13 of the code, precisely
resolving to the first concrete element in the array.

Trade-offs in the Approximation. We compare symbolic ac-

cess paths to identify must aliases and shrink the program state

space by introducing the disjointness assumptions. Our disjoint-

ness checking over-approximates branch conditions in the program

with non-deterministic choices, which boosts the efficiency but

can lead to falsely assumed disjointness. Meanwhile, introducing

disjointness assumptions under-approximates the state space to

enable strong updates and improves the precision, but can lead

to missed bugs. In § 4, we formally demonstrate that the analysis

corresponds to an under-approximation of an over-approximation

[32] and further discuss about the trade-offs.

3.3 Propagating Interprocedural Disjointness

To coordinate the disjointness property with the compositional

analysis, we carefully design the function summary to incorporate

the disjointness assumptions, which we validate and propagate

inter-procedurally during summary application.

Compact Function Summary. Our summary is generated from

the symbolic memory model by projecting it to the parameter reach-

able symbolic heap locations. Utilizing symbolic access path, the

summary uniformly represents both the heap locations and nu-

merical variables. The disjointness assumptions introduced during

summary generation serve as the precondition of the summary and

free it from encoding possible aliasing patterns from the function’s

environment, making the summary compact.

Summary Application with Disjointness Propagation. At

a call site, the precondition of the callee’s summary is checked

because newly discovered aliasings at the caller can disprove it

and invalidate the summary. If the disjointness assumption is not

refuted, it is further propagated to the caller and the summary is

applied to instantiates the callee’s effects on both the heap and

value. Otherwise, the analysis degrades to a non-compositional

mode and proceeds by “inlining” the callee’s code.

We achieve efficiency in the summary application by employing

the same procedure of disjointness checking as in § 3.2: At the

function call site, the disjointness assumption is only refuted when

the concerned symbolic heap locations used by the summary are

found to be must-aliases in the current context. In this manner,

we preserve the under of over approximation for the disjointness

property in the modular analysis setting.

Example 3.3. The summary of set_mem (shown in Fig. 4) is gen-

erated from the symbolic memory model in Fig. 5a and predicated

on the disjointness assumption 4𝑝𝑎𝑟2 ≠ 0. At the call site Line 11

in Fig. 1, the analysis attempts to apply the existing summary.

With the second parameter given the value 1, the disjointness

assumption 4𝑝𝑎𝑟2 ≠ 0 is instantiated into 4 ≠ 0 and found to

hold. Therefore, the summary of set_mem is applied: the two stored
memory locations 𝑝𝑎𝑟1 and 𝑝𝑎𝑟1 + 4𝑝𝑎𝑟2 from the summary are

instantiated to 𝑙10 :: 𝑙2 and 𝑙10 :: 𝑙2+4 respectively (𝑝𝑎𝑟1 instantiates
to what buf points to, i.e., 𝑙10 :: 𝑙2, c.f. Fig. 4).

4 PROGRAM ABSRACTION

In this section, we formally define our abstraction of the program

state and the function summary, which are essential to approximat-

ing the disjointness property in a modular analysis.

Analysis State. We propose the following symbolic memory

model to track the heap and numerical state simultaneously:

Definition 4.1. A program state is a four-tuple 𝜎 ∈ 𝑆𝑡𝑎𝑡𝑒
def

=

𝑁𝑢𝑚𝐸𝑛𝑣 × 𝑃𝑡𝑟𝐸𝑛𝑣 ×𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 ×𝐶𝑜𝑛𝑑 , where

• 𝑁𝑢𝑚𝐸𝑛𝑣
def

= 𝑉𝐼 → Γ Numerical environment.

• 𝑃𝑡𝑟𝐸𝑛𝑣
def

= 𝑉𝑃 → 𝐴𝑐𝑐 Pointer environment.

• 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 ⊆ 𝐴𝑐𝑐 ×𝐴𝑐𝑐 Abstract store.

• 𝜑 ∈ 𝐶𝑜𝑛𝑑 ::= 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | 𝑣𝑎1 < 𝑣𝑎2 | 𝜑1 ∧ 𝜑2 Constraint.

The numerical state is decomposed into 𝑁𝑢𝑚𝐸𝑛𝑣 (recording the

current symbolic values for numerical variables) and𝐶𝑜𝑛𝑑 (the path

condition for certain program execution). The heap state is charac-

terized by 𝑃𝑡𝑟𝐸𝑛𝑣 and𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 , which tracks the address contained

in a pointer variable and the points-to target of the address.

Under 𝜎 , the set of degenerated heap locations (c.f. Definition 2.1)

represented by a symbolic heap location can be defined as:

Definition 4.2. (Concretization of Symbolic Heap Location, instan-

tiated from Definition 2.2) Given a symbolic heap location 𝜋 ∈ 𝐴𝑐𝑐

and a mapping 𝑀 ∈ 𝑆𝑦𝑚𝑉𝑎𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 , let 𝑐𝑜𝑛𝑐𝑟 (𝜋,𝑀) def

=

𝜋 [𝑀 [𝑥]/𝑥]𝑥 ∈𝑑𝑜𝑚 (𝑀) where 𝜋 [𝑀 [𝑥]/𝑥] substitutes𝑀 [𝑥] for 𝑥 in

𝜋 . The concretization of 𝜋 under a program state 𝜎 is 𝛾 (𝜋, 𝜎) def

=

{𝑐𝑜𝑛𝑐𝑟 (𝜋,𝑀) | 𝑀 |= 𝜎}, where𝑀 |= 𝜎 indicates that𝑀 is a model

of the constraint 𝜑 of 𝜎 , i.e., 𝜎 = (_, _, _, 𝜑), 𝑀 |= 𝜑1.

We now rephrase the disjointness property:

Definition 4.3. (Disjointness Property, instantiated from Defini-

tion 3.1) Let disjoint(𝜋1, 𝜋2, 𝜎)
def

= 𝛾 (𝜋1, 𝜎)∩𝛾 (𝜋2, 𝜎) = ∅ denote the
must disjoint relation between 𝜋1, 𝜋2 ∈ 𝐴𝑐𝑐 under 𝜎 . Given a state

𝜎 = (_, _, 𝑠𝑡𝑜𝑟𝑒, _)with 𝑠𝑡𝑜𝑟𝑒 ∈ 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 = (𝜋1, 𝑝𝑡𝑠1), . . . , (𝜋𝑘 , 𝑝𝑡𝑠𝑘 ),
the disjointness property holds if ∀𝑖 ≠ 𝑗 . disjoint(𝜋𝑖 , 𝜋 𝑗 , 𝜎).

Syntactical Approximation of the Disjointness Property.

As illustrated in § 3, we efficiently distinguish among symbolic heap

locations by leveraging the numerical environment to construct

and syntactically compare symbolic access paths, which embeds

the values of the numerical variables in its representation:

Example 4.1. Given a state 𝜎 = ( [𝑚 ↦→ 2, 𝑛 ↦→ 𝑛̂], [𝑝 ↦→
𝑙1], [𝑙1 ↦→ 𝑙2, 𝑙2 ↦→ 1], _), the symbolic access path for 𝑝 +𝑚 + 𝑛 is

constructed as 𝜋 = (𝑝 +𝑚 + 𝑛) [𝑙1/𝑝] [2/𝑚] [𝑛̂/𝑛] = 𝑙1 + 𝑛̂ + 2.

Whenever two heap locations have syntactically different sym-

bolic access paths, the analysis assumes that they are disjoint and

tracks their states independently in the abstract store. Formally, we

ensure that our analysis state satisfies an uniqueness property:

Definition 4.4. (Uniqueness Property) Let ≡ denote the equiva-

lence relation of symbolic access paths (Definition 2.1), which is

1
We use _ to denote a component in 𝑆𝑡𝑎𝑡𝑒 that is not used in our exposition.
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defined based on comparing the syntax trees. Given a state 𝜎 =

(_, _, 𝑠𝑡𝑜𝑟𝑒, _) with 𝑠𝑡𝑜𝑟𝑒 ∈ 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒 = (𝜋1, 𝑝𝑡𝑠1), . . . , (𝜋𝑘 , 𝑝𝑡𝑠𝑘 ), 𝜎
satisfies the uniqueness property if ∀.𝑖 ≠ 𝑗 : 𝜋𝑖 . 𝜋 𝑗 , i.e., 𝐴𝑏𝑠𝑆𝑡𝑜𝑟𝑒

in Definition 4.1 is a function in 𝐴𝑐𝑐 → 𝐴𝑐𝑐 .

The important question is, what is the relationship between

the uniqueness property preserved by the analysis state and the

disjointness property (Definition 4.3) that we aim for? The following

theorem formally addresses the approximation:

Theorem 4.2. (Approximation of the disjointness property) Let
𝜎 [𝜑] be a state that is the same as 𝜎 except that the constraint is
replaced by𝜑 . Given𝜎 satisfying the uniqueness property with 𝑠𝑡𝑜𝑟𝑒 =
(𝜋1, 𝑝𝑡𝑠1), . . . , (𝜋𝑘 , 𝑝𝑡𝑠𝑘 ), we have ∀𝑖 ≠ 𝑗 : disjoint(𝜋𝑖 , 𝜋 𝑗 , 𝜎 [𝜑𝑑 ]),

where 𝜑𝑑
def
=

∧
𝑖≠𝑗 𝜋𝑖 ≠ 𝜋 𝑗 and 𝜑𝑑 . 𝑓 𝑎𝑙𝑠𝑒 .

Theorem 4.2 has the following implications. First, our abstraction

is sound for discovering must-aliases. Specifically, when two heap

locations share the same representation of the symbolic access

path under our memory model, they must be aliased to each other.

Second, we may produce false positives for deciding disjointness

due to ignoring numerical constraints. For instance, if the constraint

in Ex. 4.1 were −3 < 𝑛̂ < −1, then 𝑙1 and 𝑙1 + 𝑛̂ + 2 must be aliases

even though they are syntactically different.

Remark 4.1. Notice that the construction of symbolic access paths

has already involved arithmetic rewriting based on the numeri-

cal environment (as shown by Ex. 4.1), as opposed to the syntac-

tic access path used in RacerD [5]. Theoretically, our abstraction

of the disjointness property forms an under-approximation of an

over-approximation [32]. Particularly, we first identify must-aliases

pairs of symbolic heap locations in the over-approximated pro-

gram where branch conditions are replaced with non-deterministic

choices. Then we perform an under-approximation of that over-

approximation by strengthening the state to 𝜎 [𝜑𝑑 ] as in Theo-

rem 4.2, thereby only accounting for the program executions where

the concerned symbolic heap locations are disjoint.

The under-of-over paradigm may lead to both false positives and

false negatives. Similarly, when targeting realistic programs with

millions of lines of code, existing static bug-finding tools are neither

strict over- nor under-approximation [2, 3, 64, 74].

Function Summary. Our function summary tracks (1) the ob-

servable effects of the function and (2) a set of safety queries for

the buffer accesses made within the function:

Definition 4.5. A function summary is a set of pairs 𝑆𝑚𝑟𝑦 ∈
𝐹𝑢𝑛𝑐𝑆𝑚𝑟𝑦

def

= ℘(𝑆𝑡𝑎𝑡𝑒 × ℘(𝐶𝑜𝑛𝑑)), where (𝜎,𝑄𝑠) ∈ 𝑆𝑚𝑟𝑦 indi-

cates that 𝜎 is the final state for a specific program execution of

the function, and 𝑄𝑠 ∈ ℘(𝐶𝑜𝑛𝑑) is a set of queries generated for

that execution. Each query 𝑄 ∈ 𝐶𝑜𝑛𝑑 is a constraint encoding the

condition for triggering buffer overflow at a certain dereference

site. We assume a global summary environment 𝑆𝑚𝑟𝑦𝐸𝑛𝑣 that maps

from a function 𝑓 to its summary.

Although we ignore the constraints when determining the dis-

jointness relation among heap locations, they are recorded in 𝑄𝑠

for building the conditions for triggering buffer overflow.

init-state

Function definition : 𝑑𝑒𝑓 𝑖𝑛𝑒 fun(𝑓1, ..., 𝑓𝑛) = {𝑆 }
𝑒0 = 𝜆𝑓𝑖 ∈ 𝑉𝐼 . 𝑓̂𝑖 𝑒1 = 𝜆𝑓𝑗 ∈ 𝑉𝑃 .𝑝𝑎𝑟 𝑗 𝑠𝑡 = 𝜆𝑝𝑎𝑟 𝑗 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑒1) .(∗𝑝𝑎𝑟 𝑗 )

𝑖𝑛𝑖𝑡_𝑎𝑏𝑠 (𝑓 𝑢𝑛) ⊢ (𝑒0, 𝑒1, 𝑠𝑡, 𝑡𝑟𝑢𝑒)
arith-num

𝑎𝑒𝑥𝑝′ = 𝑎𝑒𝑥𝑝 [𝑒 (𝑥)/𝑥 ]𝑥∈𝑑𝑜𝑚 (𝑒 )
(𝑒, _, _, _) ⊢ 𝑣 := 𝑎𝑒𝑥𝑝 : (𝑒 [𝑣 ↦→ 𝑎𝑒𝑥𝑝′ ], _, _, _)

arith-ptr

(𝑒0, 𝑒1, _, _) ⊢ 𝑣 := 𝑏 + 𝑜 : (𝑒0, 𝑒1 [𝑣 ↦→ 𝑒1 (𝑏) + 𝑒0 (𝑜) ], _, _)
alloc

(𝑒0, 𝑒1, _, _) ⊢ 𝑣1 := 𝑎𝑙𝑙𝑜𝑐𝑙 (𝜏, 𝑣2) : (𝑒0, 𝑒1 [𝑣1 ↦→ 𝑙 (𝑒0 (𝑣2)) ], _, _)
store

𝜋 = 𝑒1 (𝑣) 𝑣𝑎𝑙 = (𝑡𝑦𝑝𝑒 (𝑘) = int) ? 𝑒0 (𝑘) : 𝑒1 (𝑘) 𝑠𝑡 ′ = 𝑠𝑡 [𝜋 ↦→ 𝑣𝑎𝑙 ]
(𝑒0, 𝑒1, 𝑠𝑡, _) ⊢ ∗𝑣 = 𝑘 : (𝑒0, 𝑒1, 𝑠𝑡 ′, _)

ld-int

𝑣𝑎𝑙 = 𝑠𝑡 (𝑒1 (𝑣)) 𝑡𝑦𝑝𝑒 (𝑘) = int

(𝑒0, 𝑒1, 𝑠𝑡, _) ⊢ 𝑘 = ∗𝑣 : (𝑒0 [𝑘 ↦→ 𝑣𝑎𝑙 ], 𝑒1, 𝑠𝑡, _)
ld-ptr

𝑣𝑎𝑙 = 𝑠𝑡 (𝑒1 (𝑣))
𝑡𝑦𝑝𝑒 (𝑘) = 𝑝𝑡𝑟 (𝜏) 𝑠𝑡 ′ = (𝑣𝑎𝑙 ∈ 𝑑𝑜𝑚 (𝑠𝑡 )) ? 𝑠𝑡 : 𝑠𝑡 [𝑣𝑎𝑙 ↦→ (∗𝑣𝑎𝑙) ]

(_, 𝑒1, 𝑠𝑡, _) ⊢ 𝑘 = ∗𝑣 : (_, 𝑒1 [𝑘 ↦→ 𝑣𝑎𝑙 ], 𝑠𝑡 ′, _)
smry-gen

Function definition : 𝑑𝑒𝑓 𝑖𝑛𝑒 fun(𝑓1, ..., 𝑓𝑛) = {𝑆 }
𝑖𝑛𝑖𝑡_𝑎𝑏𝑠 (𝑓 𝑢𝑛) ⊢ 𝜎0 (𝜎0, ∅) ⊢ 𝑆 : (𝜎𝑓 𝑢𝑛,𝑄)

(𝜎𝑓 𝑢𝑛,𝑄) ∈ 𝑆𝑚𝑟𝑦𝐸𝑛𝑣 (𝑓 𝑢𝑛)

Figure 6: Intra-procedural inference rules. assume, seq and

nondet are handled in standard manner (rules omitted).

5 ANALYSIS ALGORITHM

This section details our algorithm for buffer overflow detection. We

first present our intra-procedural analysis, especially the rules to

effectively handle memory operations at symbolic heap locations in

§ 5.1, and describe the application of function summaries to support

inter-procedural reasoning in § 5.2. Finally, we illustrate the method

for reporting buffer overflow bugs in § 5.3.

5.1 Intra-procedural Analysis

Our analysis preserves the uniqueness property of 𝜎 and utilizes

it to handle memory operations at symbolic heap locations. Fig. 6

formulates the analysis using judgment 𝜎 ⊢ 𝑆 : 𝜎 ′
, meaning that

executing 𝑆 transforms the state 𝜎 to 𝜎 ′
, which we elaborate below.

State Initialization. We analyze a function independently of

its calling context where the initial values for function parameters

are unknown. Rule init-state sets up the initial state and also ini-

tializes our disjointness assumptions: each integer parameter 𝑓𝑖 is

associated with an unknown symbolic value 𝑓̂𝑖 in 𝑒0, each pointer

parameter 𝑓𝑗 points to an unknown memory object denoted by the

access path 𝑝𝑎𝑟 𝑗 , and the initial store contains pairs of (𝑝𝑎𝑟 𝑗 , ∗𝑝𝑎𝑟 𝑗 ),
implicitly assuming that different 𝑝𝑎𝑟 𝑗 s do not alias.

Construction of Symbolic Access Path. As illustrated by

Ex. 4.1, the construction of the symbolic access path leverages the

numerical environment in arithmetic simplification. Rule arith-ptr
updates the symbolic access path for the assigned pointer vari-

able by adding the symbolic offset, 𝑒0 (𝑜), to the symbolic access

path, 𝑒1 (𝑏), of the base pointer. Meanwhile, numerical computation

among integer variables is handled by the Rule arith-num.
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Handling Memory Operations. Heap locations come from not

only memory allocations, e.g., Rule alloc uses 𝑙 (𝑒0 (𝑣2)) to indicate

that the memory object allocated at the location 𝑙 has size 𝑒0 (𝑣2),
but also function parameters. Thus, special treatments are needed to

handle unknown memory objects from the function’s environment.

Moreover, our analysis should preserve the uniqueness property

during the handling of memory operations, which is crucial for

enabling strong updates to symbolic heap locations (Theorem 4.2).

Handling Unknown Points-to Target. To handle a load or store

operation at 𝑣 , we first obtain the symbolic access path 𝜋 = 𝑒1 (𝑣)
for 𝑣 in the pointer environment, 𝑒1, and subsequently retrieve the

points-to target by looking up the abstract store 𝑠𝑡 . However, 𝜋

may never have been stored before, e.g., when it is derived from

the function parameters and points to the unknown environment.

Therefore, we make a distinction between loading an integer (Rule

ld-int) and loading a pointer (Rule ld-ptr). A form of lazy initializa-

tion [38] is performed in the Rule ld-ptr : when the loaded value 𝑣𝑎𝑙

is a pointer but has no points-to target, we initialize in 𝑠𝑡 to record

that 𝑣𝑎𝑙 points to the unknown target ∗𝑣𝑎𝑙 .
Preserving the Uniqueness Property. When updating the abstract

store 𝑠𝑡 with 𝑠𝑡 [𝜋 ↦→ 𝑣𝑎𝑙] in Rule store, we first lookup for a pair

(𝜋0, 𝑣𝑎𝑙0) ∈ 𝑠𝑡 such that 𝜋 ≡ 𝜋0 (Recall that ≡ is the syntactical

equivalence relation of symbolic access paths). If found, 𝑣𝑎𝑙0 is

overwritten with 𝑣𝑎𝑙 . Otherwise, a new pair (𝜋, 𝑣𝑎𝑙) is added to 𝑠𝑡 .

Essentially, memory operations are carried out on symbolic access

paths that are uniquely identified by their syntactical structures.

Example 5.1. Consider the analysis of the following function:
define f(p:ptr(ptr(int)), q:ptr(int), n:int) =

{*q = n; t = *p; *t = 1; k=t+n; *k = 2;}

Utilizing Rule init-state of Fig. 6, we start from 𝜎0 = (𝑒𝑛, 𝑒𝑝 , 𝑠𝑡0, 𝑐)
where 𝑒𝑛 = [𝑛 ↦→ 𝑛̂], 𝑒𝑝 = [𝑝 ↦→ 𝑝𝑎𝑟1, 𝑞 ↦→ 𝑝𝑎𝑟2], 𝑠𝑡0 = [𝑝𝑎𝑟1 ↦→
∗𝑝𝑎𝑟1, 𝑝𝑎𝑟2 ↦→ ∗𝑝𝑎𝑟2], 𝑐 = 𝑡𝑟𝑢𝑒 . The analysis of f produces:

𝜎0 →store (𝑒𝑛, 𝑒𝑝 , 𝑠𝑡1 = 𝑠𝑡0 [𝑝𝑎𝑟2 ↦→ 𝑛̂], 𝑐)
→ld-ptr (𝑒𝑛, 𝑒 ′𝑝 = 𝑒𝑝 [𝑡 ↦→ ∗𝑝𝑎𝑟1], 𝑠𝑡2 = 𝑠𝑡1 [∗𝑝𝑎𝑟1 ↦→ ∗ ∗ 𝑝𝑎𝑟1], 𝑐)
→store (𝑒𝑛, 𝑒 ′𝑝 , 𝑠𝑡3 = 𝑠𝑡2 [∗𝑝𝑎𝑟1 ↦→ 1], 𝑐)
→arith-ptr (𝑒𝑛, 𝑒 ′′𝑝 = 𝑒 ′𝑝 [𝑘 ↦→ ∗𝑝𝑎𝑟1 + 𝑛̂], 𝑠𝑡3, 𝑐)
→store 𝜎𝑓 = (𝑒𝑛, 𝑒 ′′𝑝 , 𝑠𝑡4 = 𝑠𝑡3 [∗𝑝𝑎𝑟1 + 𝑛̂ ↦→ 2], 𝑐)

Summary Generation. In order to generate function summary

as defined in Definition 4.5, we extend the semantic judgment

to (𝜎,𝑄) ⊢ 𝑆 : (𝜎 ′, 𝑄 ′) where 𝑄,𝑄 ′ ∈ ℘(𝐶𝑜𝑛𝑑) are the sets of

generated queries before and after executing 𝑆 , respectively (Rule

smry-gen of Fig. 6). Recall that a query 𝑄 encodes the condition

for triggering buffer overflow. For a dereferenced symbolic access

path 𝜋 , we extract both the numerical offset of 𝜋 and the size of

its pointed memory object to form the query condition. When the

offset and size of 𝜋 depend on the caller, we employ the uninter-

preted functions 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝜋) and 𝑠𝑖𝑧𝑒 (𝜋) that will be instantiated
later during summary application.

Example 5.2. (Continuing Ex. 5.1) The summary generated for f
is (𝜎𝑓 , 𝑄), where 𝜎𝑓 is defined in 5.1 and the queries in 𝑄 include

𝑄1 = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑝𝑎𝑟2) + 1−𝑠𝑖𝑧𝑒 (𝑝𝑎𝑟2) > 0, 𝑄2 = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑝𝑎𝑟1) + 1−
𝑠𝑖𝑧𝑒 (𝑝𝑎𝑟1) > 0, 𝑄3 = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (∗𝑝𝑎𝑟1) + 1 − 𝑠𝑖𝑧𝑒 (∗𝑝𝑎𝑟1) > 0, 𝑄4 =

𝑜 𝑓 𝑓 𝑠𝑒𝑡 (∗𝑝𝑎𝑟1) + 𝑛̂ + 1 − 𝑠𝑖𝑧𝑒 (∗𝑝𝑎𝑟1) > 0. They correspond to the

statements *q=n, t=*p, *t=1, and *k=2 respectively.

𝑛𝑜𝑟𝑚 (𝜋0, 𝑠𝑡 )
def

=


𝑠𝑡 (𝛼) if 𝜋0 = ∗𝜋 and 𝑛𝑜𝑟𝑚 (𝜋, 𝑠𝑡 ) = 𝛼, 𝛼 ∈ 𝑑𝑜𝑚 (𝑠𝑡 )
∗𝛼 elif 𝜋0 = ∗𝜋 and 𝑛𝑜𝑟𝑚 (𝜋, 𝑠𝑡 ) = 𝛼, 𝛼 ∉ 𝑑𝑜𝑚 (𝑠𝑡 )
𝛼 + 𝑜 𝑓 𝑓 elif 𝜋0 = 𝜋 + 𝑜 𝑓 𝑓 and 𝑛𝑜𝑟𝑚 (𝜋, 𝑠𝑡 ) = 𝛼

𝜋0 otherwise

inst-acc

Callee definition : 𝑑𝑒𝑓 𝑖𝑛𝑒 callee(𝑓1, . . . , 𝑓𝑛) = 𝑆

Call site : 𝑐𝑎𝑙𝑙𝑒𝑒𝑙0 (𝑎1, . . . , 𝑎𝑛)
Caller state at the call site : 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 = (𝑛𝑢𝑚𝐸, 𝑝𝑡𝑟𝐸, 𝑠𝑡, _)

𝑀 = [𝑝𝑎𝑟𝑖 ↦→ 𝑝𝑡𝑟𝐸 (𝑎𝑖 ) ] 𝑓𝑖 ∈𝑉𝑃 ∪ [𝑓𝑗 ↦→ 𝑛𝑢𝑚𝐸 (𝑎 𝑗 ) ] 𝑓𝑗 ∈𝑉𝐼 ∪ 𝜆𝑙𝑠.𝑙0 :: 𝑙𝑠

𝑖𝑛𝑠𝑡 (𝜋, 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) = 𝑛𝑜𝑟𝑚 (𝑚𝑎𝑝𝜋 (𝜋,𝑀), 𝑠𝑡 )

smry-app

(𝜎𝑐𝑎𝑙𝑙𝑒𝑒 ,𝑄) ∈ 𝑆𝑚𝑟𝑦𝐸𝑛𝑣 (𝑐𝑎𝑙𝑙𝑒𝑒) 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 = (𝑛𝑢𝑚𝐸, 𝑝𝑡𝑟𝐸, 𝑠𝑡1, 𝜑1)
𝜎𝑐𝑎𝑙𝑙𝑒𝑒 = (_, _, 𝑠𝑡2, 𝜑2) 𝑠𝑡2 = (𝜋1, 𝑡𝑔1), . . . , (𝜋𝑚, 𝑡𝑔𝑚)

∀𝑖 ≠ 𝑗 : 𝑖𝑛𝑠𝑡 (𝜋𝑖 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) . 𝑖𝑛𝑠𝑡 (𝜋 𝑗 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 )
𝑠𝑡𝑛𝑒𝑤 = 𝑠𝑡1 [𝑖𝑛𝑠𝑡 (𝜋𝑖 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) ↦→ 𝑖𝑛𝑠𝑡 (𝑡𝑔𝑖 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) ]1≤𝑖≤𝑚

𝜑𝑛𝑒𝑤 = 𝜑1 ∧ 𝑖𝑛𝑠𝑡 (𝜑2, 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 )
𝑄′ = 𝑖𝑛𝑠𝑡 (𝑄,𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) 𝜎′

𝑐𝑎𝑙𝑙𝑒𝑟 = (𝑛𝑢𝑚𝐸, 𝑝𝑡𝑟𝐸, 𝑠𝑡𝑛𝑒𝑤 , 𝜑𝑛𝑒𝑤 )
(𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ,𝑄0) ⊢ 𝑐𝑎𝑙𝑙𝑒𝑒𝑙0 (𝑎1, . . . , 𝑎𝑛) : (𝜎′

𝑐𝑎𝑙𝑙𝑒𝑟 ,𝑄0 ∪𝑄′)

Figure 7: Summary application for inter-procedural analysis.

5.2 Inter-procedural Analysis

When processing function calls, our analysis will attempt to apply

the existing summaries of the callee function (illustrated by Fig. 7).

As the summary is predicated on the disjointness assumption intro-

duced during the analysis, we check if the current context induces

any must-alias pairs that invalidate the summary to preserve the

uniqueness property inter-procedurally. If applicable, any observ-

able effect encoded in the summary should be instantiated at the call

site. Both aspects require instantiating the symbolic access paths

used by the summary (Rule inst-acc), which we now elaborate.

Semantic Instantiation of Symbolic Access Path. The sym-

bolic access path is first transformed syntactically into the caller’s

name space by𝑚𝑎𝑝𝜋 (𝜋,𝑀) def

= 𝜋 [𝑀 (𝑥)/𝑥]𝑥 ∈𝑑𝑜𝑚 (𝑀) . Specifically,
𝑝𝑎𝑟𝑖 is mapped to 𝑝𝑡𝑟𝐸 (𝑎𝑖 ) (the symbolic access path of the cor-

responding actual argument 𝑎𝑖 ), 𝑓𝑗 associated with the integer

parameter 𝑓𝑗 is mapped to its actual value 𝑛𝑢𝑚𝐸 (𝑎 𝑗 ) at the call site,
and any concrete location 𝑙𝑠 is prepended with the call site 𝑙0 to

achieve a context-sensitive heap abstraction [43, 67, 76].

The transformed symbolic access path 𝜋0 = 𝑚𝑎𝑝𝜋 (𝜋,𝑀) may

still contain sub expressions of the form ∗𝜋𝑝 , and the points-to

target of 𝜋𝑝 needs to be further resolved at the call site. This is due

to the lazy initialization of the function’s environment during sum-

mary generation, which can involve multiple levels of dereference

through the function parameter. We thus apply 𝑛𝑜𝑟𝑚(𝜋0, 𝑠𝑡) to nor-
malize 𝜋0 under the caller’s store 𝑠𝑡 by eliminating the dereference

operators in 𝜋0 as many as possible. The 𝑖𝑛𝑠𝑡 procedure is naturally

extended to instantiate constraints and queries (i.e., 𝜑 ∈ 𝐶𝑜𝑛𝑑) to

the caller context by descending over their syntax trees.

Summary Application with Precondition Validation. Rule

smry-app demonstrates the summary application process to handle

function calls. The summary is applied only if the disjointness

assumption is not refuted at the call site, i.e., the instantiation of

the store 𝑠𝑡2 of 𝜎𝑐𝑎𝑙𝑙𝑒𝑒 should not contain two heap locations that

are must-aliases (condition 𝑖𝑛𝑠𝑡 (𝜋𝑖 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 ) . 𝑖𝑛𝑠𝑡 (𝜋 𝑗 , 𝜎𝑐𝑎𝑙𝑙𝑒𝑟 )).

Example 5.3. (Continuing Ex. 5.2) Consider the function:

define g(o1:ptr(int), o2:ptr(int)) = {

o3=alloc𝑙1 (ptr(int), 16); *o3 = o2; x=4; f𝑙2 (o3, o1, x);}
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The summary for the callee f is (𝜎𝑓 , 𝑄) defined in Ex. 5.2 where

𝜎𝑓 = ( [𝑛 ↦→ 𝑛̂], [𝑝 ↦→ 𝑝𝑎𝑟1, 𝑞 ↦→ 𝑝𝑎𝑟2, 𝑡 ↦→ ∗𝑝𝑎𝑟1, 𝑘 ↦→ ∗𝑝𝑎𝑟1 + 𝑛̂],
[𝑝𝑎𝑟1 ↦→ ∗𝑝𝑎𝑟1, 𝑝𝑎𝑟2 ↦→ 𝑛̂, ∗𝑝𝑎𝑟1 ↦→ 1, ∗𝑝𝑎𝑟1 + 𝑛̂ ↦→ 2], 𝑡𝑟𝑢𝑒)

Let 𝜎𝑔 = ( [𝑥 ↦→ 4], [o1 ↦→ 𝑝𝑎𝑟 ′
1
, o2 ↦→ 𝑝𝑎𝑟 ′

2
, o3 ↦→ 𝑙1], [𝑙1 ↦→

𝑝𝑎𝑟 ′
2
, 𝑝𝑎𝑟 ′

1
↦→ ∗𝑝𝑎𝑟 ′

1
, 𝑝𝑎𝑟 ′

2
↦→ ∗𝑝𝑎𝑟 ′

2
], 𝑡𝑟𝑢𝑒) be the analysis state at

𝑙2, where 𝑝𝑎𝑟
′
𝑖
denotes the ith parameter of𝑔. Applying Rule inst-acc,

we have 𝑖𝑛𝑠𝑡 (𝑝𝑎𝑟1, 𝜎𝑔) = 𝑙1, 𝑖𝑛𝑠𝑡 (𝑝𝑎𝑟2, 𝜎𝑔) = 𝑝𝑎𝑟 ′
1
, 𝑖𝑛𝑠𝑡 (∗𝑝𝑎𝑟1, 𝜎𝑔) =

𝑝𝑎𝑟 ′
2
and 𝑖𝑛𝑠𝑡 (∗𝑝𝑎𝑟1+𝑛̂, 𝜎𝑔) = 𝑝𝑎𝑟 ′

2
+4. For instance, ∗𝑝𝑎𝑟1 is mapped

to ∗𝑙1 and further normalized to 𝑝𝑎𝑟 ′
2
since 𝑙1 points to 𝑝𝑎𝑟

′
2
in 𝜎𝑔 .

The summary application result is 𝜎𝑔, 𝑄 ⊢ f
𝑙2 (o3, o1, x) : 𝜎 ′

𝑔, 𝑄
′
,

where 𝜎 ′
𝑔 = ( [𝑥 ↦→ 4], [o1 ↦→ 𝑝𝑎𝑟 ′

1
, o2 ↦→ 𝑝𝑎𝑟 ′

2
, o3 ↦→ 𝑙1], [𝑙1 ↦→

𝑝𝑎𝑟 ′
2
, 𝑝𝑎𝑟 ′

1
↦→ 4, 𝑝𝑎𝑟 ′

2
↦→ 1, 𝑝𝑎𝑟 ′

2
+ 4 ↦→ 2], 𝑡𝑟𝑢𝑒).

Notice that Rule smry-app applies because symbolic access paths

in the instantiated store are syntactically different from each other.

Intuitively, we have propagated the disjointness assumptions to 𝑔,

e.g., o1 is assumed to be disjoint from o2+4, which will be further

validated at call sites of 𝑔. The query 𝑄2 in Ex. 5.2 is resolved to be

false because 𝑄 ′
2
= 𝑜 𝑓 𝑓 𝑠𝑒𝑡 (𝑙1) + 1 − 𝑠𝑖𝑧𝑒 (𝑙1) > 0 ≡ (0 + 1 − 16) >

0 ≡ 𝑓 𝑎𝑙𝑠𝑒 , while 𝑄 ′
1
, 𝑄 ′

3
, 𝑄 ′

4
still depend on callers of 𝑔.

When the summary is not applicable due to must-alias pairs

discovered at the call site, the analysis conceptually “dives into” the

body of the callee function, which we refer to as the on-demand

inlining. To achieve this, we extend the analysis state defined in

Definition 4.1 with an extra component of call stack that grows

and shrinks accordingly during the calls and returns. Notice that

after diving into the callee function, we may still apply the func-

tion summaries at the call sites inside it. Hence the benefits of the

compositional design can still be enjoyed.

Remark 5.1. Modeling the unknown aliasing from a function’s

environment is a classic challenge in modular heap analysis. Most

existing solutions fall into three classes: (1) Simply presume the

“non-aliasing” among parameters in an unsoundmanner [25, 51, 74];

(2) Account for the exponential number of possible aliasing patterns

when building the summary (e.g., the relevant context inference
[16] and the approach in [23]), which is costly; and (3) Gradually

construct the function summaries by reanalysis when new input

patterns are discovered, such as the partial transfer functions [72].
However, neither of them distinguish among symbolic heap lo-

cations or summarize disjunctive heap states. Our “non-aliasing

with check” approach records the disjointness assumption as the

precondition of the function summary, which is capable of distin-

guishing among symbolic heap locations, but only describes an

under-approximation of the function’s behaviors.

5.3 Buffer Overflow Detection

The query conditions from the summary will be checked for report-

ing buffer overflow bugs. Suppose(𝜎,𝑄𝑠) ∈ 𝑆𝑚𝑟𝑦𝐸𝑛𝑣 (𝑓 ), we report
a buffer overflow for𝑄 ∈ 𝑄𝑠 if𝑄 is satisfiable as decided by an SMT

solver and independent of unresolved caller dependencies (similar

to the concept of “manifest bugs” in [44]). Specifically, 𝑄 should

contain no symbolic access path of the form 𝑝𝑎𝑟 𝑗 or ˆ𝑓𝑖 introduced

by the Rule init-state of Fig. 6. For instance,𝑄2 in Ex. 5.2 can only be

resolved to be safe during summary application at its caller (Ex. 5.3).

6 EVALUATION

We implement Cod based on LLVM [42]. Each loop in the control

flow graph and call graph is replaced with an one-time unrolling

of its body. Our evaluation aims to answer the following research

questions:

• RQ1: How does Cod perform compared with other static analyz-

ers in terms of buffer overflow detection?

• RQ2: The effectiveness of the important design choices in Cod.

– RQ2.1: How does the disjointness assumption affect the preci-

sion and recall of the analysis?

– RQ2.2: How often is the disjointness assumption invalidated

during summary application?

To perform the evaluation, we have selected 12 real-life open-source

C/C++ projects including tmux, zstd, tcpdump, curl, redis, openssl,
systemd, frr, php, binutils, qemu, gcc (listed w.r.t the increasing order
of program size), and assign them project IDs {0, . . . , 11}. They
range from a few thousand LoC to close to several million, cover

diverse application domains, and are widely used and extensively

checked by static analysis tools. We select the Juliet Test Suite with

known ground truth to perform some of the control experiments.

All the experiments were performed on a computer with dual

20-core processors Intel(R) Xeon(R) CPU E5-2698 v4@2.20GHz and

256GB physical memory, running Ubuntu-20.04.

6.1 Effectiveness of Buffer Overflow Detection

We compare Cod with four state-of-the-art static analyzers: Ikos

[7], Symbiotic [12], Clang Static Analyzer (CSA) [1] and Infer [9].

The first two are formal verification tools: Ikos is based on abstract

interpretation and adopts a conservative memory model, while

Symbiotic utilizes the array theory for handling memory operations

at symbolic heap locations (c.f. § 1). Meanwhile, CSA and Infer share

a similar design purpose with Cod by conducting “out-of-the-box”

bug detection on large and realistic programs.

There are several challenges in making an end-to-end compari-

son against different static analyzers:

(1) Different tools may have different heuristics or engineering

choices that may be undocumented or incomparable, e.g., Infer

bounds themaximumnumber of disjunctionswhile CSA bounds

the number of times a basic block is traversed.

(2) Subjectivity in reports classification: We may not be able to

perfectly classify a bug report as false or true, e.g., when some

global invariant of the code is unknown to a human analyst.

Due to these standard caveats in evaluating static analysis tools as

well as the difference in design goals (verification vs bug finding),

we only present a best-effort evaluation and do not assert that one

tool is necessarily superior to another. For challenge (1), we adopt

the default configurations of all the tools because they normally

represent empirically good values. To check for buffer overflow, we

run Infer with the option --buffer-overrun-only and run CSA

with all buffer overflow related checkers. All the tools are run in a

single-threaded setting. For challenge (2), we manually investigate

the bug trace and its related code for each reported warning to

determine the false positive rate. Further, we study the proportion

of reports confirmed by the developers.
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(a) Performance comparison over projects of increasing size.

ID
Cod CSA Infer Symbiotic

R / UR / TP R / UR / TP R / UR / TP R / UR / TP

0 0 / 0 / 0 23 / 10 / 1 156* / 26 / 1 1 / 1/ 0

1 3 / 2 / 2 26 / 12 / 0 22 / 16 / 1 0 / 0 / 0

2 3 / 3 / 1 5 / 5 / 0 51 / 20 / 1 5 / 4 / 1

3 1 / 1 / 1 59 / 30 / 1 12 / 9 / 0 1 / 1 / 0

4 5 / 3 / 2 36 / 36 / 1 104* / 33 / 1 FAIL

5 11 / 3 / 1 77 / 52 / 2 983* / 41 / 1 0 / 0 / 0

6 7 / 4 / 2 716* / 65 / 1 774* / 49 / 1 37 / 13 / 1

7 15 / 7 / 5 74 / 50 / 1 716* / 53 / 0 3 / 2 / 0

8 16 / 6 / 4 169* / 62 / 2 TO 1 / 1 / 0

9 17 / 7 / 5 217* / 65 / 0 333* / 43 / 0 19 / 6 / 0

10 6 / 4 / 2 158* / 60 / 0 FAIL FAIL

11 24 / 6 / 4 FAIL FAIL FAIL

(b) “#R”: number of reports, “#UR”: number of unique reports, “#TP”:

number of true positives. When a tool produces over 100 reports, we

only examine 100 of them at random (marked with *).

Cod CSA Infer Symbiotic ∩1 ∩2 ∩3

29 (15) 9 (4) 6 (1) 2 (0) 4 (4) 1 (1) 1 (1)

(c) Distribution of true positives. X(Y) indicates that X reports are clas-

sified as true positives and Y of them are confirmed by the developers.

∩1, ∩2, and ∩3 denotes Cod ∩ CSA, Cod ∩ Infer and CSA ∩ Infer

respectively, representing the true positives reported by multiple tools.

The two true positives of Symbiotic are uniquely found.

Figure 8: Comparison of Cod, CSA, Infer, and Symbiotic. “TO”

denotes timeout without producing reports. “FAIL” denotes

analysis failure (due to crashes). Symbiotic doesn’t finish

within the timeout for all subjects.

Ikos and Symbiotic. Ikos successfully analyzes 11 % of the com-

piled bitcodes and fails on the rest because it only supports a subset

of the LLVM instructions. In total, Ikos generates 2026 warnings.

We randomly check 100 of them and discover that 72 reports are

false positives, but could not determine for the rest because Ikos

does not produce a bug trace to examine for the reported warnings.

Symbiotic is primarily designed for verifying memory safety. In

our experiments, it does not finish the verification within 12 hours

for all subjects, but is able to output the errors found up to the point

when the timeout occurs. In total, 28 unique reports are generated

with two true positives as shown in the last column of Fig. 8b.

The relatively small number of found errors reflects the scalability

issues of Symbiotic in large programs, as it employs heavyweight

symbolic reasoning and a non-compositional design. Most of the

false positives (24 out of 26) are due to Symbiotic conservatively

reporting errors for accessing external memory objects.

Cod, CSA and Infer. CSA and Infer share similar design pur-

poses with Cod for practical bug detection, which we now fo-

cus on comparing. The result is shown in Fig. 8. We make two

basic observations. First, Cod has a false positive rate of 37% (=

Σ#𝑈𝑅−Σ#𝑇𝑃
Σ#𝑈𝑅

= 46−29
46

), which is significantly more precise than CSA

(98%) and Infer (98%). Notice that the buffer overflow checkers from

CSA and Infer may generate a large number of reports, in which

case we only examine 100 of them at random. While true bugs may

be hidden in the reports not examined by us, the high false posi-

tive rate may discourage their adoptions by developers in realistic

scenarios [3]. Second, Cod exhibits a runtime performance similar

to that of CSA and Infer and scales to analyze millions of lines of

code: it completes within around four hours across all projects.

The distribution of true positives detected is shown in Fig. 8c.

As the data illustrates, different static bug finders tend to catch

different bugs as also observed in [44]. Out of the 29 true positives

detected by Cod, 15 bugs have been confirmed by the developers

and three of them are severe enough to be assigned with CVE IDs.

The bug reports can be found in https://tinyurl.com/ytktvd8v.

Answer to RQ1: Cod is the only static analyzer evaluated that

both scales to million-line codebases and exhibits a relatively

low false positive rate. Cod detects 29 buffer overflow bugs

(15 confirmed) from real-world projects.

Discussions. To understand the high false positive rate of CSA

and Infer and how distinguishing symbolic heap locations may

help to improve it, consider the code snippet in Fig. 9a extracted

from curl. CSA and Infer conservatively presume that the symbolic

heap location endofn = &ptr[nlen] is an alias of &ptr[0] and

generate a false positive for the dereference of *endofn (after the
pointer decrement endofn--, an access at index −1 is deduced). In
contrast, Cod utilizes the disjointness assumption to track the state

of symbolic heap locations separately and avoids the false positive

by precisely reasoning about the numerical value of the offset nlen
(the code indeed checks nlen before the dereference).

As imprecision in static analysis accumulates and also originates

from other aspects orthogonal to our work, it is difficult to give

a quantitive measurement of how many false positives from CSA

and infer are due to their inability to distinguish symbolic heap

locations. Thus, we propose to further evaluate the effect of the

disjointness assumption with ablation study in § 6.2.

Our treatment of loop, i.e., loop unrolling, is unsound and can

lead to both false positives and false negatives. Fig. 9b shows an

example where the loop invariant 𝑠𝑢𝑚 = 2×𝑖 is crucial for discover-
ing the off-by-one error when accessing ar[sum]. This is a common

challenge for under-approximate static bug finders [2, 64, 69, 73]

where “path dropping” is applied [54]. In contrast, Ikos and Sym-

biotic could in principle detect the bug by employing a relational

numerical domain [19] or using the techniques in [13] respectively.

6.2 Effectiveness of the Design Choices

In this section, we examine the impact of the disjointness assump-

tion and its preservation across function boundaries.

Effectiveness of the disjointness assumption, To study RQ

2.1, we implement a variant of our analysis Cod
−
that does not

distinguish among symbolic heap locations. In Cod
−
we take the

conventional layered design: a conservative pointer analysis is first

https://tinyurl.com/ytktvd8v
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struct Cookie ∗Curl_cookie_add(...) {

const char ∗endofn = &ptr[ nlen ];

if(nlen >= MAX_NAME−1) return 0;

if(nlen) {

endofn−−;

if(ISBLANK(∗endofn)) ...

}

}

(a) Code extracted from curl.

int loop(...) {

int sum = 0;

int ∗ar = malloc(sizeof(int) ∗ 2n)

for (int i = 0; i < n; ++i) {

sum += 2;

}

return ar[sum];

}

(b) A challenging loop program.

Figure 9: Case studies for strength and weakness of Cod.
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Figure 10: Study of the design choices. Legends Cod
−
and

Cod: the false positive rates of the two variants (left y axis).

RF-Cod: the proportion of times that the disjointness as-

sumption is refuted at call sites for Cod (right y axis).

carried out (we use a flow-sensitive pointer analysis [49]), and the

path-sensitive checking for buffer overflow utilizes the pointer anal-

ysis result to resolve memory dependencies. Cod
−
is unable to dif-

ferentiate symbolic heap locations due to its reliance on the pointer

analysis and loading from a symbolic heap location may return

any value suggested by the pointer analysis non-deterministically.

Other aspects of Cod
−
are the same as Cod, e.g., it also conducts a

bottom-up symbolic execution to detect potential buffer overflows.

We evaluate Cod
−
on the same set of 12 projects and compare its

precision with Cod. The result in Fig. 10 shows that Cod
−
produces

significantly more false positives (FP rate 84%). We also compare

Cod and Cod
−
using the Juliet Test Suite, where each test case

comprises of 𝑋 true bugs and 𝑌 safe variants. We have found that:

(1) Out of the 14164 test cases from five CWE categories related

to buffer overflow (CWE number 121, 122, 124, 126, 127), Cod

handles 9963 (70%) of them with 100% precision and recall. The

rest includes 3952 test cases designed for the wide-character

string (not supported by our implementation), 126 test cases

related to the reasoning of string contents, and 123 test cases

where the bugs do not manifest at the LLVM level (e.g., bugs that

happen only if sizeof(int *) == 4). Interestingly, we have
not found a false negative case due to our intentional shrinking

of the state space by enforcing the disjointness assumption.

(2) Running Cod
−
on the 9963 test cases successfully handled by

Cod, the false positive rate jumps drastically from 0% to 57%.

Answer to RQ2.1: The disjointness assumption significantly

improves the precision of Cod over Cod
−
: false positive rate

37% vs. 84% on real projects and 0% vs. 57% on the Juliet Test

Suite. Cod achieves 70% of recall on the Juliet Test Suite, pro-

viding confidence for its bug detection capability empirically.

Effectiveness of the compositional analysis. In our analysis,

we check before summary application whether the disjointness as-

sumption made by the summary (i.e., its precondition) is disproved

at the call site. To study RQ 2.2, we postulate that the disjoint-

ness assumption holds most of the time, enabling the analysis to

benefit from the disjointness for better precision and efficiency.

Fig. 10 shows the experimental data for validating the disjointness

assumption, from which we can conclude:

Answer to RQ2.2: On average, the disjointness assumption is

only disproved for 4.51% of the time, allowing the analysis

to benefit from it for the majority of the cases.

7 RELATEDWORK

Static buffer overflow detection / memory safety verifica-

tion. Several static bug finders have been developed to detect buffer

overflows [28, 45, 48, 51, 71, 75]. Meanwhile, methods based on sym-

bolic model checking [34, 57] or abstract interpretation [6, 53] can

be used to prove memory safety properties, such as the absence of

buffer overflows. As discussed in § 1, these methods either adopt

a conservative memory model that lacks precision in reasoning

about disjunctive heap states based on numerical information or use

heavyweight symbolic methods that lead to state space explosion.

In contrast, Cod introduces disjointness assumptions into its mem-

ory model and enables strong updates to symbolic heap locations,

improving both the precision and scalability of the analysis.

Combination of heap and numerical analyses. Heap and

numerical analysis can be carried out together by utilizing a prod-

uct domain [6, 46, 53], or modularly combined without tampering

with the constituents [14, 26, 27]. However, these works do not ef-

fectively utilize numerical information to enable strong updates in

heap reasoning for better precision. McCloskey et al. [52] introduce

a common predicate language to exchange facts between heap and

numeric domains. However, their method is challenging to auto-

mate because it requires the user to provide shared predicates, such

as a loop invariant. Works on the shape and static array analysis

[11, 18, 31, 36, 50] have proposed many strategies to partition the

unbounded heap. For instance, Gopan et al. [31] isolates individ-

ual heap cells to perform strong updates and constructs explicit

partitions of the heap. However, these partition-based methods are

susceptible to case explosion [21] in static analysis. In contrast,

we do not infer invariants but instead target a subset of the pro-

gram state space where the disjointness property holds, effectively

tracking the states for symbolic heap locations for bug detection.

Refutation based refinement of heap analysis. A conserva-

tive heap analysis can be refined iteratively by on-demand backward

analyses at selective program locations to improve the precision (as

in checking memory leak [4] and JavaScript property accesses [68]),

but may suffer from performance issues and fail due to timeout [4].

To statically detect buffer overflow based on refinement, we suspect

that our disjointness assumptions and compositional design are



Precise Compositional Buffer Overflow Detection
via Heap Disjointness ISSTA ’24, September 16–20, 2024, Vienna, Austria

still necessary to mitigate the state space explosion problem and be

practical in large codebases.

Disjunctive static analysis. Maintaining a disjunction of states

is related to sensitivity in static analysis [39, 59] and is crucial

for the precision [1, 20, 44, 47, 64]. To balance the performance,

existing works either merge abstract states to maintain a sound

over-approximation [15, 47, 61] or drop disjuncts [1, 9, 40], e.g.,

state selection heuristics are proposed to maximize the number

of detected bugs [40]. We select disjunctive states to exploit the

disjointness property for enabling strong updates and improving

the precision of buffer overflow checking.

Compositional heap analysis. Reasoning about parameter-

induced aliasing has long been a major obstacle for modular heap

analysis, which we have surveyed and compared in in Remark 5.1.

In compositional shape analysis [10, 33], bi-abduction is used to

infer function specifications expressed in terms of separation logic

formulas [58], where a form of disjointness over the input shapes

of the function is presumed implicitly and the summarization of

the numerical state is left unspecified. In contrast, Cod explicitly

introduces the disjointness assumption in its memory model and

encodes both the heap and value state in the function summary.

Seahorn [34] introduces logical predicates to model the behavior

of functions and uses an extensional theory of arrays to encode

heap and numerical properties [35]. During constraint solving,

sophisticated algorithms exploiting summaries are used and can

lead to exponential cost [35, 41], which is too costly for our scenario.

8 CONCLUSION

We have presented Cod, a precise and scalable static buffer overflow

detector, which introduces the heap disjointness assumptions to

enable efficient strong updates to symbolic heap locations, and

utilizes precise and compact function summaries for compositional

analysis. Cod uncovered 29 buffer overflow bugs from large, real-

world software efficiently with a low false positive rate.

9 DATA AVAILABILITY

The artifact of Cod is available at https://tinyurl.com/5349ndc9.
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