
Efficient Strong Updates For
Path Sensitive Data Dependence Analysis
Yiyuan Guo

The Hong Kong University of Science and Technology

Hong Kong, China

yguoaz@cse.ust.hk

Charles Zhang

The Hong Kong University of Science and Technology

Hong Kong, China

charlesz@cse.ust.hk

Abstract

Path-sensitive data dependence analysis is a powerful technique

widely used in static vulnerability detection. One of the central

challenges is how to resolve indirect data dependencies induced by

pointer operations: the value loaded from a memory location may

depend on different values stored before. Resolving indirect data

dependencies in a path-sensitive manner significantly improves the

analysis precision, but also induces high overhead that limits its

scalability.

We observe that much of the computation effort in path-sensitive

data dependence analysis is spent on performing strong updates

during load-store matching: a stored value propagates to a load

statement only if it is not overwritten by other values stored to

the same memory location during the propagation. Answering this

question path-sensitively is extremely challenging and often leads

to a state explosion that precludes efficient static analysis.

To improve the efficiency for performing strong updates in path-

sensitive data dependence analysis, our key insight is that the re-

lation among multiple store statements could be determined in

stages: most of the easy cases are handled efficiently by inferring a

must-kill relation among the heap store statements, reserving the

computationally expensive path-sensitive analysis for the rest. We

design a tree-like data structure to encode both the control flow and

alias information, which incrementally updates the relation during

the analysis. Experiments have shown significant speed-ups and

improved state coverage in static analysis through the algorithmic

improvements of path-sensitive strong updates.

CCS Concepts

• Software and its engineering→ Software verification and

validation.

Keywords

Static analysis, data dependence analysis.

ACM Reference Format:

Yiyuan Guo and Charles Zhang. 2026. Efficient Strong Updates For Path

Sensitive Data Dependence Analysis. In 2026 IEEE/ACM 48th International
Conference on Software Engineering (ICSE ’26), April 12–18, 2026, Rio de
Janeiro, Brazil. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3744916.3773183

This work is licensed under a Creative Commons Attribution 4.0 International License.

ICSE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/26/04

https://doi.org/10.1145/3744916.3773183

1 Introduction

Data dependence analysis [15], which tracks the def-use relation

among program variables, underpins a great many static analysis

techniques for bug finding, such as memory leak, use after free, and

null pointer dereference [26, 33, 39, 43]. The central challenge in

data dependence analysis is to resolve the indirect dependencies in-

duced by pointer operations. For instance, in the code *p = k; t=*q,
the variable t is data dependent on k (or equivalently, the value of k
may flow to t) if p and q refer to the same memory location.

For statically detecting bugs in large and realistic systems, the

analyzer is often expected to track complex value flows involving

deep calling contexts, extensive memory operations, and sophis-

ticated path correlations [5, 33]. Path-sensitive data dependence

analysis [6, 28, 33, 40, 43, 44] is a promising direction to achieve

this goal and recent advancements [33, 44] have demonstrated

significant improvements in terms of both precision and analysis

efficiency.

1.1 Inefficient Path-sensitive Strong Updates

To resolve the indirect dependencies precisely, a path-sensitive data

dependence analysis tracks the condition for how value flows into

and out of the heap. Moreover, to precisely infer heap contents,

strong updates [35] are enabled by inferring the condition 𝜑 under

which storing to a heap location may overwrite its old containing

value [44].While path-sensitivity and strong updates together bring

better precision, they also lead to significant scalability challenges.

Falcon [44], the state-of-the-art approach, pairs path-sensitivity

with amodular design for better efficiency. Specifically, a bottom-up,

path-sensitive pointer analysis is carried out to resolve local indirect

dependencies and function side-effects, where the more complex

inter-procedural path conditions are discovered on-demand during

the bug detection phase. However, we observe that the other axis,

i.e., strong updates, still constitutes a major performance bottle-

neck in path-sensitive data dependence analysis, especially for the

realistic programs where sheer number of load / store statements

and complex points-to relations are present.

Consider the code example shown in Fig. 1a (ignore Line 13 for

now). To resolve indirect dependencies, the analysis needs to match

the three load statements at Line 15 (x1), 18 (x2), and 21 (x3) with
the three store statements at Line 10 (q1), 12 (q2), and 17 (q3). A
conservative answer is any of {q1, q2, q3} may flow into

1
any of

{x1, x2, x3}, which is highly imprecise. In contrast, a path-sensitive

data dependence analysis will deduce the condition for the value

stored at Line 𝑖 (𝑙𝑖) to flow into the value loaded at Line 𝑗 (𝑙 𝑗). For

1
In this paper, we consider the SSA form [10] of the program, where variables and

their corresponding values can be used interchangeably.

https://orcid.org/0000-0001-5985-6610
https://orcid.org/0000-0001-6417-1034
https://doi.org/10.1145/3744916.3773183
https://doi.org/10.1145/3744916.3773183
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3773183

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

instance, the table cell at the column 𝑙12 and the row 𝑙21 of Fig. 1b

indicates that q2 flows to x3 under the condition ¬c2 ∧ ¬c3.
However, the precise result for load-store matching comes at a

price. To support strong updates, the candidate store statements

providing the incoming values need to be enumerated exhaustively

for performing case analysis, which leads to a blowup of conditions

that throttles the performance. For instance, the statement at 𝑙18
of Fig. 1a loads the pointer p that could point to either 𝑜4 or 𝑜6 (𝑜𝑖
denotes the memory object allocated at Line 𝑖). As shown by Fig. 1c,

the conditions for q3, q2, and q1 to be first stored into 𝑜4 and later

loaded into x2 are as follows (denoted by cond(q𝑖
𝑜4−→ x2)):

• cond(q3 𝑜4−→ x2): The condition equals c1 ∧ c3, where c1 is the
condition for n to point to 𝑜4 (n equals p due to 𝑙8 and 𝑙14) and c3
is the condition guarding 𝑙17.

• cond(q2 𝑜4−→ x2): The condition includes (1) c1 ∧ ¬c2 ∧ c3 and
(2) ¬cond(q3 𝑜4−→ x2). The first part contains c1 for p to point to

𝑜4, ¬c2 and c3 for the execution to reach 𝑙12 and 𝑙18 respectively.

The second part is a blocking condition: for q2 to flow into x2,
the effect of storing q3 at 𝑙17 must be blocked.

• cond(q1 𝑜4−→ x2): Similarly, for q1 to flow into x2 via 𝑜4, c1 ∧
c2 ∧ c3 must be satisfied and the effects of 𝑙17 and 𝑙12 need

to be blocked (the blocking conditions ¬cond(q3 𝑜4−→ x2) and
¬cond(q2 𝑜4−→ x2)).

Essentially, the analysis enables strong updates through path-

sensitive reasoning by blocking the effects of other store statements

that could interfere with the result of the particular load. In Fig. 1c,

conjoining the blocking conditions makes cond(q2 𝑜4−→ x2) and
cond(q1 𝑜4−→ x2) unsatisfiable, meaning that only q3 can flow to x2
via 𝑜4. While this improves the precision, it could easily produce

a blow-up of blocking conditions and significantly hurts the effi-

ciency: to match the load statement 𝑙 𝑗 with the store statement 𝑙𝑖 ,

all the other store statement 𝑙𝑘 lying between 𝑙𝑖 and 𝑙 𝑗 need to be

“blocked”, leading to a linear number of extra blocking conditions,

each of which might itself be a complex formula.

1.2 Our Solution

Our goal is tomaintain the high precision benefits of path-sensitivity

and strong updates for data dependence analysis, while greatly im-

proving the analysis efficiency. Our key insight is that instead of

solely relying on the determination of path conditions to enable

strong updates, we can infer a must-kill relation among the store

statements based on a synergy of must-alias analysis and control
flow analysis. The must-kill relation is computed efficiently and can

help to discover the strong update opportunities for the majority

of cases, reserving the computationally expensive path-sensitive

analysis only for the rest.

For resolving the indirect dependencies of 𝑙18 in Fig. 1a, our

approach will infer that the store at 𝑙17 must kill the stores at 𝑙10
and 𝑙12 based on the following reasons:

(1) Control Flow Dominance: Any execution path from 𝑙10 or 𝑙12
to 𝑙18 must go through 𝑙17.

(2) Must Aliasing: The stored pointer n at 𝑙17 must alias the stored

pointer p at 𝑙10 and 𝑙12 (p flows to n according to 𝑙8 and 𝑙14).

1 void foo(int ∗∗∗m) {

2 int ∗∗p, ∗∗n;

3 if (c1)

4 p = malloc(int∗);

5 else

6 p = malloc(int∗);

7

8 ∗m = p;

9 if (c2)

10 ∗p = q1;

11 else

12 ∗p = q2;

13 // ∗p = q0;
14 n = ∗m;

15 int ∗x1 = ∗p;

16 if (c3) {

17 ∗n = q3;

18 int ∗x2 = ∗p;

19 }

20

21 int ∗x3 = ∗p;

22

23 }

(a) Code example.

From

To

𝑙10 :

q1
𝑙12 :

q2
𝑙17 :

q3

𝑙15 : x1 c2 ¬ c2 NA

𝑙18 : x2 false false c3

𝑙21 : x3
c2 ∧
¬ c3

¬ c2 ∧
¬ c3

c3

(b) Final results for load-store match.

cond(q3 𝑜4−→ x2) = c1 ∧ c3

cond(q2 𝑜4−→ x2) = c1 ∧ ¬c2 ∧ c3∧

¬cond(q3 𝑜4−→ x2)
= false

cond(q1 𝑜4−→ x2) = c1 ∧ c2 ∧ c3∧

¬cond(q3 𝑜4−→ x2)∧

¬cond(q2 𝑜4−→ x2)∧
= false

(c) Deriving the conditions for q3, q2, and
q1 to flow into x2 via 𝑜4. They can also flow

into x2 via 𝑜6, with similar derivations.

Figure 1: Illustration of Path-sensitive data dependence anal-

ysis. 𝑙𝑖 denotes the statement at Line 𝑖 and 𝑜𝑖 represents the

memory object allocated at 𝑙𝑖 .

Therefore, for resolving the indirect dependencies of x2, we could
early terminate the analysis after discovering the strong update at

𝑙17, thereby avoiding the costly path-sensitive reasoning for match-

ing against the values stored in 𝑙10 or 𝑙12 as demonstrated in Fig. 1c.

Intuitive as the idea may seem, there are two major challenges

for implementing our approach:

(1) Inferring must-aliases in a path-sensitive setting is hard. While

control flow dominance could be decided efficiently, determin-

ing whether two pointers p and q are must-aliases in a path-

sensitive setting is hard because p and q may point to different

memory locations under different conditions. This is the in-

herent complexity of path-sensitive analysis that we intend to

avoid in the first place.

(2) Lengthy history of store operations need to be considered. Dur-

ing the load-store matching, a load statement could have mul-

tiple preceding store statements as candidates. Constructing

the must-kill relation among the candidates needs to check the

must-aliasing and control flow dominance relation for times

quadratic to the number of candidates, further threatening the

performance.

To tackle these challenges, we design an algorithm based on

syntactical equivalence checking to efficiently compute an approxi-

mation of the must-aliasing results. Further, we adopt a tree-like

data structure to maintain and incrementally update the must-kill

relation during the analysis to avoid the quadratic behavior.

In this paper, we propose Tuna, a technique that boosts the

performance of resolving indirect dependencies in path-sensitive

data dependence analysis by enabling efficient strong updates. Tuna

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Program 𝑃 ::= F+

Func 𝐹 ::= define 𝑓 (𝑣1, ..., 𝑣𝑛) = {𝑆}
Statement 𝑆 ::= 𝑣 := 𝑒 | 𝑣 := &𝑎

| ∗𝑣 := 𝑘 | 𝑘 := ∗𝑣
| 𝑎𝑠𝑠𝑢𝑚𝑒 (𝛾)
| 𝑣 := 𝑖𝑡𝑒 (𝛾, 𝑣1, 𝑣2)
| 𝑓 (𝑎1, · · ·𝑎𝑛)
| 𝑆1; 𝑆2 | 𝑛𝑜𝑛𝑑𝑒𝑡 (𝑆1, 𝑆2) | return 𝑣

Figure 2: A simple programming language.

limits the scope of the path-sensitive reasoning by identifying most

strong update opportunities based on a must-kill relation among

the heap store statements. We implemented Tuna and evaluated

it on 20 real world programs. Comparing with the state-of-the-

art approach Falcon [44], Tuna achieves a speedup ranging from

1.2x to 31.5x, reduces the peak memory usage to around 39.5%–

62.9%, and is able to finish on targets where Falcon fails due to

resource constraints. The enhancement in performance of Tuna

also transfers to improved state coverage in static analysis.

In summary, this paper makes the following contributions:

• We identify the efficiency problem of performing strong updates

in path-sensitive data dependence analysis for resolving indirect

dependencies.

• We infer a must-kill relation among the heap store statements

to efficiently enable strong updates by limiting the scope of the

path-sensitive analysis. We design algorithms and data struc-

tures to optimize the performance of both the must-kill relation

computation and the path-sensitive analysis.

• We implement the idea and demonstrate that our approach im-

proves over the state-of-the-art significantly in terms of run time,

peak memory and state coverage.

2 Preliminaries

In this section, we give some preliminary definitions and formally

state the problem of path-sensitive data dependence analysis. We

demonstrate our approach using the language in Fig. 2. We use 𝐿𝑜𝑐

to denote the set of program locations (𝑙 : 𝑆 means a statement 𝑆

at the program location 𝑙) and 𝛾 ∈ 𝐶𝑜𝑛𝑑 to denote conditions (or

guards). Most of the statements are standard. We represent memory

allocation (such as malloc) using the address-of operator (v:=&a).
We use the 𝑎𝑠𝑠𝑢𝑚𝑒 statement to model branch conditions and the

𝑛𝑜𝑛𝑑𝑒𝑡 statement to perform a non-deterministic choice.

The program is assumed to be in SSA-form [10] where def-use

relations among the top-level variables are made explicit. The state-

ment 𝑣 := 𝑖𝑡𝑒 (𝛾, 𝑣1, 𝑣2) indicates that 𝑣 is assigned 𝑣1 if 𝛾 holds and

is assigned 𝑣2 otherwise (mirroring the 𝜙-statement in SSA). In this

work, we inherit the same assumptions from previousworks [33, 44]

that the program is loop free and no aliasing exists among the ac-

cessed heap locations from the function’s environment.

The goal of path-sensitive data dependence analysis is to con-

struct the sparse value flow graphs (SVFG), where nodes represent

values and edges denote how value flows:

Definition 2.1. A path-sensitive data dependence analysis com-

putes a set of SVFGs G = (⋃𝑓 ∈𝐹𝑢𝑛𝑐𝑠 𝐺 𝑓 , 𝐸𝑖𝑛𝑡𝑒𝑟 , 𝐿𝐸), where each

function f has its own SVFG denoted by 𝐺 𝑓 (𝑁𝑓 , 𝐸𝑓). Each node

𝑛 ∈ 𝑁𝑓 of 𝐺 𝑓 is either a program variable v (recall our use of SSA)

or a memory access path (*p)𝑙 denoting the value contained in p
at the program location 𝑙 . Each edge 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸𝑓 is labelled
with a condition 𝛾 = 𝐿𝐸 (𝑒) ∈ 𝐶𝑜𝑛𝑑 indicating that 𝑣1 may flow to

𝑣2 under the condition, which we write as 𝑣1
𝛾
−→ 𝑣2.

To facilitate inter-procedural analysis, interface variables [42]

are created for a function’s SVFG, including its parameters, return

value, and the memory access paths from its environment that

are either read or written inside the function. Then the value flow

across function boundaries are encoded in 𝐸𝑖𝑛𝑡𝑒𝑟 , which contains

edges connecting a function’s interface variables to the matching

values at the function’s call site. For instance, suppose f calls g as
in 𝑙 : 𝑔(𝑎1, · · ·𝑎𝑛) and 𝑝𝑎𝑟𝑖 denote the ith parameter of g, we model

regular parameter passing as 𝑎𝑖
(𝑙−→ 𝑝𝑎𝑟𝑖 ∈ 𝐸𝑖𝑛𝑡𝑒𝑟 , 𝑎𝑖 ∈ 𝑁𝑓 , 𝑝𝑎𝑟𝑖 ∈

𝑁𝑔 . Notice that edges from 𝐸𝑖𝑛𝑡𝑒𝑟 are labelled with open (for calls)

or close parentheses (for returns) corresponding to the call site 𝑙 ,

modeling context-sensitivity with CFL reachability [31].

An inter-procedural value flow path 𝜋 = 𝑣1 → ...𝑣𝑘 is feasible if∧
(𝑣𝑖

𝛾𝑖−→𝑣𝑗) ∈𝜋
𝛾𝑖 is satisfiable and the sequence of edges in 𝜋 from

𝐸𝑖𝑛𝑡𝑒𝑟 constitutes an inter-procedural realizable path [31].

The goal of path-sensitive data dependence analysis is to con-

struct SVFGs that resolve the indirect dependencies:

Definition 2.2. The SVFGs G soundly resolve the indirect de-

pendencies if for any concrete execution of the program in which

𝑡 = ∗𝑢 fetches the value of 𝑘 stored before in ∗𝑣 := 𝑘 , there exists a
feasible inter-procedural value flow path 𝜋 = 𝑘 → · · · → 𝑡 in G.

We assume that the domain of conditions,𝐶𝑜𝑛𝑑 , and the decision

procedures for checking the satisfiability or validity of these condi-

tions are provided. In this work, we follow Falcon [44] to construct

the conditions based on a propositional abstraction of the program

and reuse the lightweight semi-decision procedures of Falcon. As

opposed to a full-fledged SMT solver, these procedures could decide

restricted class of condition formulas in quasi-linear time but may

also conservatively classify unsatisfiable conditions as satisfiable.

3 Tuna in a nutshell

In this section, we illustrate how Tuna boosts the performance of

resolving indirect dependencies for constructing the SVFGs defined

in 2.1. First, we discuss the design of existing works and highlight

why they encounter scalability challenges in performing strong

updates path-sensitively. Then we introduce our idea of staged

resolving of indirect dependencies based on the inference of the

must-kill relation for performing strong updates efficiently. Finally,

we demonstrate algorithmic optimizations for computing the must-

kill relation and performing the path-sensitive analysis.

3.1 The Scalability Challenge

Path-sensitive data dependence analysis such as Falcon qualifies

the analysis domain with path conditions, which are constructed,

propagated, and solved to prune infeasible value flows. As shown

in Fig. 3, in order to resolve the indirect dependencies of x2 at 𝑙18
of Fig. 1a, Falcon computes:

• A points-to map 𝑃𝑡𝑠 : p and n point to 𝑜4 and 𝑜6 under the condi-

tion c1 and ¬c1 respectively (Fig. 3b).

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

𝑙10

𝑜4 𝑖0 = (q1, c1 ∧ c2)

𝑜6 𝑖1 = (q1, ¬c1 ∧ c2)

𝑙12

𝑜4 𝑖2 = (q2, c1 ∧ ¬ c2)

𝑜6 𝑖3 = (q2, ¬c1 ∧ ¬ c2)

𝑙17

𝑜4 𝑖0′ = (q1, c1 ∧ c2 ∧ c3)
𝑖2′ = (q2, c1 ∧ ¬ c2∧ c3)
𝑖4 = (q3, c1 ∧ c3)

𝑜6 𝑖1′ = (q1, ¬c1 ∧ c2 ∧ c3)
𝑖3′ = (q2, ¬c1 ∧ ¬ c2 ∧ c3)
𝑖5 = (q3, ¬c1 ∧ c3)

(a) For location 𝑙𝑖 and

memory object 𝑜 𝑗 , the list

of reachable store items

(𝑣𝑎𝑙, 𝑐𝑜𝑛𝑑) is maintained.

p

n x1

q1 q2

c2 ¬c2

q3

x2

c3

p, n
𝑜4

𝑜6

c1

¬c1

Pts

SVFG

(b) Points-to map and the con-

structed SVFG. Edges are labelled

with their guarding conditions.

Item 𝑴𝒊 𝑩𝒊 𝑴𝒊 ∧ 𝑩𝒊 satisfiable?

𝑖5 𝑀0 = ¬c1 ∧ c3 𝐵0 = true Yes

𝑖3′ 𝑀1 = ¬c1 ∧ ¬ c2 ∧ c3 𝐵1 = ¬ 𝑀0 No

𝑖1′ 𝑀2 = ¬c1 ∧ c2 ∧ c3 𝐵2 = ¬𝑀0 ∧ ¬𝑀1 No

(c) The process of load-store matching by traversing the store

item list associated with 𝑙17 and 𝑜6 backwards.

Figure 3: The internals of the existing method on Fig. 1a. We

highlight the step for handling the load statement at 𝑙18.

• An abstract heap𝐻 (Fig. 3a): Given a program point and amemory

object, an ordered list of reachable “store items” is computed. For

instance, 𝑖0 = (q1, c1 ∧ c2) in the list associated with 𝑙10 and 𝑜4
indicates that 𝑜4 is stored the value q1 under c1∧ c2. Notice that
𝑖0–𝑖3 originate from the store statements at 𝑙10 and 𝑙12, but “reach”

(i.e., the stored values may be loaded back at) 𝑙17, leading to the

items 𝑖′
0
–𝑖′

3
(the guarding condition c3 for 𝑙17 is conjoined).

To resolve indirect dependencies at a particular load statement,

the points-to objects of the loaded pointer will be iterated, and

for each pointed object, the reachable value items are queried to

compute the value flow conditions. Notably, the possible interfer-

ence among the store statements are explicitly encoded as blocking

conditions in order to support strong updates.

Example 3.1. For 𝑙18 : x2 = *p in Fig. 1a, the analysis iterates

over each memory object 𝑜𝑖 that p points to (i.e., 𝑜4 and 𝑜6 according
to 𝑃𝑡𝑠), and visits the store list associated with 𝑙17 and 𝑜𝑖 backwards.

For instance, {𝑖5, 𝑖′3, 𝑖′1} is visited in order for the points to target

𝑜6 (Fig. 3c). The first item 𝑖5 = (q3,¬c1 ∧ c3) is matched under

its contained condition 𝑀0 = ¬c1 ∧ c3, indicating that q3 may

flow into x2 through the memory object o6 if 𝑀0 holds. Then 𝑖
′
3

is matched while blocking 𝑖5 (matching condition 𝑀1 and block-

ing condition 𝐵1 = ¬𝑀0), 𝑖
′
1
is matched while blocking 𝑖5 and 𝑖

′
3

(matching condition𝑀2 and blocking condition 𝐵2 = ¬𝑀0 ∧ ¬𝑀1).

Due to the blocking conditions, it is inferred that x2 can match

with 𝑖5 but cannot match with 𝑖′
3
(𝑀1∧𝐵1 ≡ false) or 𝑖′

1
(𝑀2∧𝐵2 ≡

false). A similar process is carried out for the other points-to

target 𝑜4 and infers that 𝑖4 is the only matched value item. Thus,

the analysis deduces q3 to be the only incoming value for x2, as
shown by the SVFG constructed in Fig. 3b.

Scalability Challenge. Relying on the path-sensitive reasoning

for performing strong updates can be expensive because of the

large number of store candidates to consider and the explosive

accumulation of blocking conditions. For instance, the blocking

condition formulated when matching with the first store item in

the list such as 𝑖′
1
involves all the other items 𝑖5 and 𝑖

′
3
, which could

quickly become intractable.

Practical Considerations. Due to the inherent complexity of the

path-sensitive analysis, a static analyzer often enforces limitations

on its state space exploration, e.g., a path-sensitive data dependence

analysis could limit the number of points-to targets that are tracked

path-sensitively [44]. Our work shares the same theoretical limit

of path-sensitive analysis but aims to significantly improve the

performance over the existing method such that a larger state space

could be explored more efficiently.

3.2 Identify Strong Updates Opportunities

As introduced in §1, our key improvement lies in a staged design

for resolving indirect dependencies in path-sensitive data depen-

dence analysis: strong updates are mostly enabled by exploiting

the control flow and must-alias information, limiting the scope

of the expensive path-sensitive analysis for better efficiency. To

achieve this, we compute a must-kill relation among the heap store

statements:

Definition 3.1. Given a load statement 𝑙0 : 𝑡 = ∗𝑢 and a pair of

store statements 𝑙1 : ∗𝑣1 = 𝑠1, 𝑙2 : ∗𝑣2 = 𝑠2, the store at 𝑙1 must kill

the store at 𝑙2 w.r.t 𝑙0 (denoted by𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙1, 𝑙2, 𝑙0)) if:
(1) Any execution path from 𝑙2 to 𝑙0 must go through 𝑙1.

(2) The stored pointers 𝑣1 and 𝑣2 are must-aliases.

The graphical illustration of the definition and the application of it

to 𝑙18 of Fig. 1a are shown in Fig. 4a and Fig. 4b.

A direct consequence of Definition 3.1 is given by the following

theorem:

Theorem 3.2. If𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙1, 𝑙2, 𝑙0) as per Definition 3.1, then 𝑡 is
not dependent on 𝑠2 in any concrete execution of the program.

From Theorem 3.2, we are able to achieve a straightforward

optimization over the existing approach: If𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙1, 𝑙2, 𝑙0), we
can safely skip 𝑙2 when resolving the indirect dependencies of 𝑙0
because the effect of 𝑙2 is guaranteed to be invalidated by 𝑙1. In

other words, we have identified the opportunity to perform a strong
update at 𝑙1 w.r.t 𝑙2.

Example 3.3. Fig. 4c illustrates how the must-kill relation in

Fig. 4b can help to enable efficient strong updates. Because of the

must-kill relations 𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙10, 𝑙18) and 𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙12, 𝑙18),
𝑙17 is discovered to be the only incoming indirect dependency for

𝑙18, allowing the analysis to skip matching between 𝑙18 and 𝑙12 or

between 𝑙18 and 𝑙10. Meanwhile, we focus the path-sensitive reason-

ing to places where the killing relation is conditional, e.g., matching

𝑙21 with 𝑙12 or 𝑙10 needs to add the blocking condition for 𝑙17.

3.3 Algorithmic Optimizations

Computing Must Aliases. According to Definition 3.1, a key chal-

lenge in computing the must-kill relation lies in the identification

of must-aliases. Higher precision in inferring must-aliasing could

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

𝑙1 ∶∗ 𝑣1 = 𝑠1

𝑙0 ∶ 𝑡 = ∗ 𝑢

𝑙2 ∶∗ 𝑣2 = 𝑠2

…Path 1 Path N

reaches

Must
alias

(a) Graphical illustration of

Definition 3.1

Must
alias

𝑙17 ∶ * n = q3;

𝑙10 ∶ * p = q1;

𝑙18 ∶ int *x2 = *p;

𝑙12 ∶ * p = q2;

(b) The must-kill relation

𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙10, 𝑙18) and

𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙12, 𝑙18) identi-

fied for Fig. 1a.

𝑙15 ∶ int *x1 = *p; 𝑙10 ∶ * p = q1;

𝑙12 ∶ * p = q2;𝑙18 ∶ int *x2 = *p;

𝑙17 ∶ * n = q3;𝑙21 ∶ int *x3 = *p;

1

2

3

3 3

(c) Utilize the must-kill relation to perform strong

updates. Edges connect loads to matched stores

and are labeled with stores that should be blocked.

Figure 4: Efficient strong updates through inferring must kill

relation among the heap store statements.

lead to the discovery of more must-alias pairs, which in turn causes

the condition in Definition 3.1 to be satisfied more often, allowing

more strong updates to be performed efficiently.

Specifically, we pursue path-sensitivity in must-aliasing infer-

ence for better precision. Two pointers p1 and p2 can be determined

to be must-aliases if they always point to the same target under

the logically equivalent condition. For instance, according to Fig. 3

(a), the pointer analysis result suggests that both p and n point

to 𝑜4 under c1 and 𝑜6 under ¬c1. They can be determined to be

must-aliases because (c1 ∧ c1) ∨ (¬c1 ∧ ¬c1) ≡ true. However,
inferring must-aliasing by computing the exact points-to condi-

tion and checking for logical equivalence suffers from the inherent

complexity of path-sensitive analysis (e.g., there may exist a large

number of points-to targets and complex points-to conditions),

which we aim to avoid in the first place.

Our idea is to approximate the computation of must-aliases based

on the following observation: If p and q always point to the same

target under the syntactically equivalent condition, they are must-

aliases (notice that the converse is not true). Our approximate

procedure can determine p and n in Fig. 3b to be must-aliases,

but may fail in other cases. Moreover, the syntactic equivalence

checking could be efficiently implemented by computing a hash

value for each node in the points-to map, which we will detail in §4.

Incrementally Update The Must-Kill Relation. As introduced

in §1, computing the must-kill relation in Definition 3.1 leads to

quadratic behaviors because all pairs of interfering store statements

need to be enumerated for computing must-aliasing and control

x1@𝑙15

𝑙10 ∶ * p = q1; 𝑙12 ∶ * p = q2;

𝑙13 ∶ * p = q0;

𝑇1

𝑙17 ∶ * n = q3;
𝑇2

Edge exists for 𝑙18
but not 𝑙21

x2@𝑙18

x3 @ 𝑙21

Anchor

Load Must kill relation Value

𝑙15 𝑇1 q0

𝑙18 q3

𝑙21 q0, q3

𝑇2 𝑇1

𝑇2 𝑇1

Update
𝑇2

Figure 5: The kill forests and matched incoming values for

𝑙15, 𝑙18, and 𝑙21 in Fig. 1a (with 𝑙13 uncommented).

flow dominance. We propose to optimize the computation by ex-

ploiting the fact that the must-kill relation is transitive. Indeed, for

a given load statement, the must-kill relation can be represented

as a must-kill forest (i.e., a set of trees), which we incrementally

update.

Specifically, to construct the must-kill relation for a load at 𝑙𝑖 ,

we trace back to its “anchor point” 𝑙 𝑗 (a preceding load statement)

and fetch the must-kill forest F previously constructed at 𝑙 𝑗 . F is

then incrementally updated to denote the must-kill relation at 𝑙𝑖 by

considering the store statements that are present between 𝑙 𝑗 and 𝑙𝑖 .

We defer the formal definition of “anchor point” to §4.

Example 3.4. The kill forest constructed for Fig. 1a (with Line 13

uncommented) is shown in Fig. 5. After processing the load at 𝑙15,

we construct tree 𝑇1 to encode that 𝑙13 must kill 𝑙10 and 𝑙12. When

computing the must-kill relation at 𝑙18 or 𝑙21, the analysis first traces

back to the “anchor point” 𝑙15 of both statements and incrementally

updates 𝑇1 by 𝑇2. 𝑇2 consists of the only store statement 𝑙17 lying

between 𝑙15 and 𝑙18 (or 𝑙21), allowing us to avoid processing the

entire history of memory stores.

Because𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙13, 𝑙18) holds but𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙17, 𝑙13, 𝑙21) does
not hold, only the must-kill forest constructed for 𝑙18 has an edge

that connects the root of𝑇2 to the root of𝑇1. As a result, the analysis

concludes that x2 only takes the incoming value from q3, while x3
either takes the value of q3 or q0 (with extra condition ¬c3 that

blocks the effect of 𝑙17).

Optimized Path-sensitive Reasoning. When the must-kill rela-

tion is absent, we fall back to using blocking conditions for enabling

strong updates. Existing method computes the condition for load-

store matching by exhaustively iterating over the possible points-to

targets, e.g., the store item list at 𝑙17 of Fig. 3 splits over 𝑜4 and 𝑜6,

which could be expensive for large points-to set.

We optimize this process by directly computing the “matching

condition” between a load and a store statement regardless of the

passed through memory objects (detailed in §4).

4 Analysis algorithm

In this section, we detail the algorithm of Tuna for SVFG construc-

tion. We first demonstrate how Tuna constructs and incrementally

updates the must-kill relation among the store statements using

a forest data structure. We then show how the kill forest boosts

the performance of performing strong updates in resolving indirect

dependencies. Finally, we elaborate on the computation of both

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

Locations 𝑙 ∈ 𝐿𝑜𝑐
Objects 𝑜𝑏 𝑗 ∈ 𝑉𝐴
Variables 𝑣 ∈ 𝑉𝑃 ∪𝑉𝐼 ∪𝑉𝐴
Guard𝜓 ∈ 𝐶𝑜𝑛𝑑 ::= 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | 𝐶𝑏 | 𝜓0 ∧𝜓1 | ¬𝜓
stOp ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 ::= (𝑙1, 𝑝1, 𝑣1) ∈ 𝐿𝑜𝑐 ×𝑉 ×𝑉
ldOp ∈ 𝐿𝑜𝑎𝑑𝑠 ::= (𝑙2, 𝑝2, 𝑣2) ∈ 𝐿𝑜𝑐 ×𝑉 ×𝑉
SVFG G ::=𝑉 → 2

(𝜓,𝑉)

Figure 6: Analysis domain of Tuna. 𝑉𝑃 , 𝑉𝐼 and 𝑉𝐴 denote

variables. 𝐶𝑏 represents an atomic boolean guard.

(G,𝜓) ⊢ 𝑣 := &𝑎 : (G[𝑜𝑎 ↦→ (𝜓, 𝑣)], _)
[𝐴𝑙𝑙𝑜𝑐]

𝜓1 =𝜓 ∧ 𝛾,
𝜓2 =𝜓 ∧ ¬𝛾

(G,𝜓) ⊢ 𝑣 := 𝑖𝑡𝑒 (𝛾, 𝑣1, 𝑣2) : (G[𝑣1 ↦→ (𝜓1, 𝑣), 𝑣2 ↦→ (𝜓2, 𝑣)], _)
[𝐼𝑡𝑒]

stOp = (𝑙, 𝑣, 𝑘)
𝑆𝑡𝑜𝑟𝑒𝑠 ⊢ (𝑙 : ∗𝑣 = 𝑘) : 𝑆𝑡𝑜𝑟𝑒𝑠 ∪ {stOp}

[𝑆𝑡𝑜𝑟𝑒]

ldOp = (𝑙, 𝑣, 𝑘), 𝐿𝑜𝑎𝑑𝑠′ = 𝐿𝑜𝑎𝑑𝑠 ∪ {ldOp}
G′ = G[𝑣𝑎𝑙 ↦→ (𝜙 ∧𝜓,𝑘)] (𝑣𝑎𝑙,𝜙) ∈𝑚𝑎𝑡𝑐ℎ (ldOp)

(G,𝜓, 𝐿𝑜𝑎𝑑𝑠) ⊢ (𝑙 : 𝑘 = ∗𝑣) : (G′,𝜓, 𝐿𝑜𝑎𝑑𝑠′)
[𝐿𝑜𝑎𝑑]

Figure 7: Inference rules of Tuna for path-sensitive data

dependence analysis.

must-aliases and may-alias condition path-sensitively, which are

crucial to the analysis performance.

4.1 Efficient Strong Updates Via Kill Relation

The core of our analysis domain (c.f. Fig. 6) is the SVFG G: Each
node corresponds to either a program variable (𝑉𝑃), an interface

variable (𝑉𝐼), or a memory allocation site (𝑉𝐴), and each edge 𝑣1
𝛾
−→

𝑣2 indicates a value flow from 𝑣1 to 𝑣2 under the condition 𝛾 (c.f.

Definition 2.1). For each store operation 𝑙1 : ∗𝑝1 = 𝑣1 in the program,

we record it as stOp = (𝑙1, 𝑝1, 𝑣1) ∈ 𝑆𝑡𝑜𝑟𝑒𝑠 . Similarly, each load

operation 𝑙2 : 𝑣2 = ∗𝑝2 is recorded as ldOp = (𝑙2, 𝑝2, 𝑣2) ∈ 𝐿𝑜𝑎𝑑𝑠 .
By processing the program statements following the topological

order of the control flow graph (CFG) and applying the inference

rules in Fig. 7, Tuna gradually constructs the SVFGs during the

path-sensitive data dependence analysis. Specifically, Rule Alloc

adds an edge 𝑜𝑎
𝜓
−→ 𝑣 to G from the allocation site to the variable,

Rule Ite adds the edges 𝑣1
𝜓1−−→ 𝑣 and 𝑣2

𝜓2−−→ 𝑣 where the conditions

𝜓1 and𝜓2 update the precondition𝜓 with 𝛾 , and Rule Store simply

adds the new store operation stOp to 𝑆𝑡𝑜𝑟𝑒𝑠 .

Rule Load performs load-store matching to resolve the indirect

dependencies and is central to the analysis. By invoking𝑚𝑎𝑡𝑐ℎ(𝑙1 :
𝑘 = ∗𝑣), the possible incoming values for𝑘 (𝑣𝑎𝑙) and their associated

conditions (𝜙) are obtained, leading to the new value flow edges

𝑣𝑎𝑙
𝜙∧𝜓
−−−→ 𝑘 (Note that the precondition𝜓 is also conjoined).

The implementation of𝑚𝑎𝑡𝑐ℎ as shown in Algorithm 1 consists

of two stages: the construction of must-kill forest (Lines 2–7) and

the computation of matching stores (Lines 8–15).

Must-Kill Forest Construction. As discussed in §3, Tuna utilizes

the must-kill relation to spot opportunities for performing strong

Algorithm 1: Load Store Matching In Tuna

Input: Load operation ldOp corresponding to 𝑙1 : 𝑘 = ∗𝑣
Global:Map𝑀 that associates program location with the

must kill forest

Output: A set of value-condition pairs (𝑣𝑎𝑙, 𝜙) that may

flow into 𝑘

1 Procedure match(𝑙1 : 𝑘 = ∗𝑣)
2 𝑙0 ← getImmAnchorOrEntry(𝑙1, 𝑣);
3 𝐹0 ← 𝑀.𝑎𝑡 (𝑙0);
4 𝑆 ← getReachableStore(𝑙0, 𝑙1);
5 𝐹𝑆 ← constructKillForest(𝑆, 𝑙1);
6 𝐹1 ← merge(𝐹𝑆 , 𝐹0, 𝑙1);
7 𝑀.set(𝑙1, 𝐹1);
8 𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡𝑠 ← getTreeRoots(𝐹1);
9 Sort 𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡𝑠 using reverse topological CFG order;

10 𝑐𝑏 ← true, 𝑅𝑒𝑠 ← ∅;
11 for Node 𝑁 in 𝑇𝑟𝑒𝑒𝑅𝑜𝑜𝑡𝑠 do
12 (𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙) ← 𝑁 ;

13 𝑐𝑚 ← getMatchCond(𝑙1 : 𝑘 = ∗𝑣, 𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙);
14 𝑅𝑒𝑠 ← 𝑅𝑒𝑠 ∪ {(𝑣𝑎𝑙, 𝑐𝑚 ∧ 𝑐𝑏)};
15 𝑐𝑏 ← 𝑐𝑏 ∧ ¬𝑐𝑚 ;

16 return 𝑅𝑒𝑠 ;

17 Procedure constructKillForest (𝑆 , 𝑙1)
18 𝐹𝑆 ← ∅ ;
19 for (𝑙2, 𝑣2, 𝑣𝑎𝑙2) ∈ 𝑆 , (𝑙3, 𝑣3, 𝑣𝑎𝑙3) ∈ 𝑆 , 𝑙2 ≠ 𝑙3 do
20 𝑁1 ← addNode(𝐹𝑆 , 𝑙2);
21 𝑁2 ← addNode(𝐹𝑆 , 𝑙3);
22 if 𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙2, 𝑙3, 𝑙1) then
23 addEdge(𝐹𝑆 , 𝑁1 → 𝑁2);
24 return 𝐹𝑆 ;

25 Procedure merge (𝐹𝑆 , 𝐹0, 𝑙1)
26 𝐹1 ← 𝐹𝑆 ∪ 𝐹0 ;
27 for 𝑁1 = (𝑙2 : ∗𝑣2 = _) in getTreeLeaves(𝐹𝑆) do
28 for 𝑁2 = (𝑙3 : ∗𝑣3 = _) in getTreeRoots(𝐹0) do
29 if 𝑚𝑢𝑠𝑡𝐾𝑖𝑙𝑙 (𝑙2, 𝑙3, 𝑙1) then
30 addEdge(𝐹1, 𝑁1 → 𝑁2);
31 return 𝐹1;

32 Procedure getMatchCond(𝑙1 : 𝑘 = ∗𝑣 , 𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙)
33 return 𝛾 (𝑙𝑥 , 𝑙1) ∧ aliasCond(𝑣, 𝑣𝑥);
34 Procedure getReachableStore (𝑙0, 𝑙1 : 𝑘 = ∗𝑣)
35 𝑆 ← {(𝑙𝑥 , 𝑣𝑥 , 𝑣𝑎𝑙) | 𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑙0, 𝑙𝑥 , 𝑙1),
36 aliasCond(𝑣, 𝑣𝑥) . false};

updates efficiently. We encode the must-kill relation in a forest data

structure that is incrementally updated. Given a load operation at

𝑙1, we seek to find its “immediate anchor point” 𝑙0 such that the

kill forest 𝐹0 at 𝑙0 equal the kill forest 𝐹1 at 𝑙1 as long as no store

statements are present between 𝑙0 and 𝑙1:

Definition 4.1. The load 𝑙0 : 𝑘0 = ∗𝑣0 is an anchor point of the load
𝑙1 : 𝑘 = ∗𝑣 if (1) 𝑙0 ≠ 𝑙1, 𝑙0 dominates 𝑙1 (2) 𝑣0 and 𝑣 are must-aliases.

𝑙0 is an immediate anchor point of 𝑙1 if for any anchor point 𝑙3 of 𝑙1
where 𝑙3 ≠ 𝑙0, 𝑙3 is also an anchor point of 𝑙0.

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Based on this intuition, Lines 2–6 of Algorithm 1 construct the

kill forest 𝐹1 at the given load statement 𝑙1 by updating the forest

𝐹0 at 𝑙0, the immediate anchor point of 𝑙1 (in case the immediate

anchor point does not exist, 𝑙0 will be the function entry and 𝐹0 will

be the empty forest).

The update from 𝐹0 to 𝐹1 is conducted by considering the set

𝑆 of new store operations that could interfere with the load at 𝑙1
(Line 4 and Lines 35–36): Each operation 𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙 in 𝑆 should

lie in a control flow path from 𝑙0 to 𝑙1 (𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 (𝑙0, 𝑙𝑥 , 𝑙1)), and
the stored pointer 𝑣𝑥 may alias 𝑣 at 𝑙1 (aliasCond(𝑣, 𝑣𝑥) . false,
which we detail in §4.2). The relation among the store operations in

𝑆 is computed and encoded in the forest 𝐹𝑆 (Line 5), which further

merges with 𝐹0 to produce the final forest 𝐹1 at 𝑙1 (Lines 6–7).

Example 4.1. For the example in Fig. 5, consider applying Algo-

rithm 1 to 𝑙18 : x2 = *p. First, according to Definition 4.1, Line 2 of

Algorithm 1 will return 𝑙15 as the immediate anchor point of 𝑙18. The

kill forest associated with 𝑙15 is 𝑇1 in Fig. 5 (obtained by Line 3 of

Algorithm 1), 𝑔𝑒𝑡𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑆𝑡𝑜𝑟𝑒 (𝑙15, 𝑙18) returns 𝑆 = {(𝑙17, n, q3)},
and 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐾𝑖𝑙𝑙𝐹𝑜𝑟𝑒𝑠𝑡 (𝑆, 𝑙18) gives rise to 𝑇2 in Fig. 5. Merging

𝑇2,𝑇1 will add an edge that connects them (i.e., the dotted edges

shown in Fig. 5), leading to the final must-kill forest at 𝑙18.

The steps to construct a kill forest from a set of store operations

and the steps to incrementally update a kill forest by merging are

shown in Lines 17–24 and Lines 25–31 of Algorithm 1 respectively.

We mitigate the quadratic performance issue in constructing the

must-kill relation by only enumerating pairs of store operations

within the reachable store set 𝑆 (Line 21), as opposed to the entire

history of store statements. Moreover, merging 𝐹𝑆 with 𝐹0 can be

achieved efficiently by examining the must-kill relation between

leaf nodes of 𝐹𝑆 and root nodes of 𝐹0 and adding edges when such

relation exists (Lines 27–30).

PerformLoad-StoreMatching.With the kill forest 𝐹1 constructed,

strong updates are enabled readily: Only the store operations at

the root nodes of 𝐹1 may provide the incoming value for 𝑘 , while

other nodes are killed by the roots of their containing trees (c.f.

Theorem 3.2). Therefore, we have successfully reduced the scope of

path-sensitive reasoning from all possible store operations to only

the root nodes of 𝐹1.

Lines 11–15 of Algorithm 1 iterate over each root node 𝑁 (asso-

ciated with a store 𝑙𝑥 : ∗𝑣𝑥 = 𝑣𝑎𝑙) in reverse topological order of

the control flow graph to perform load-store matching. The value

flow condition for 𝑣𝑎𝑙 to reach 𝑘 consists of two parts. First, as

shown by Lines 13, 32–33 of Algorithm 2, a matching condition 𝑐𝑚
is computed to enforce that the control flow can transfer from 𝑙𝑥 to

𝑙1 (denoted by the condition 𝛾 (𝑙𝑥 , 𝑙1)) and the stored pointer should

alias the loaded pointer (denoted by the condition 𝑎𝑙𝑖𝑎𝑠𝐶𝑜𝑛𝑑 (𝑣, 𝑣𝑥)).
Second, a blocking condition 𝑐𝑏 is conjoined to block the effects of

other root nodes visited before 𝑁 by taking the negation of their

matching conditions (Line 15).

Example 4.2. For the example in Fig. 5, consider applying Algo-

rithm 1 to 𝑙21 : x3 = *p. The immediate anchor point found for 𝑙21
is still 𝑙15 but the final kill forest constructed for 𝑙21 consists of two

separate trees {𝑇1,𝑇2} (c.f. Fig. 5, note that the dotted edge is not

present for the forest of 𝑙21). Lines 11–15 of Algorithm 1 visit the

root node of 𝑇2 (𝑙17 : *n=q3) and the root node of 𝑇1 (𝑙13 : *p=q0) in

Algorithm 2: Computation of Path-sensitive Alias Infor-

mation

1 Procedure getPts(G, 𝑣)
2 if 𝑣 ∈ 𝑉𝐴 then

3 return {(𝑣, true)};
4 𝑃𝑡𝑠 ← ∅;

5 for 𝑠𝑟𝑐
𝜙
−→ 𝑣 in G do

6 𝑆𝑟𝑐𝑃𝑡𝑠 ← getPts(G, 𝑠𝑟𝑐);
7 𝑈𝑝𝑑𝑃𝑡𝑠 ← {(𝑜,𝜓 ∧ 𝜙) | (𝑜,𝜓) ∈ 𝑆𝑟𝑐𝑃𝑡𝑠};
8 𝑃𝑡𝑠 ← (𝑃𝑡𝑠 \𝑈𝑝𝑑𝑃𝑡𝑠) ∪ (𝑈𝑝𝑑𝑃𝑡𝑠 \ 𝑃𝑡𝑠) ∪ {(𝑜,𝜓1 ∨

𝜓2) | (𝑜,𝜓1) ∈ 𝑃𝑡𝑠, (𝑜,𝜓2) ∈ 𝑈𝑝𝑑𝑃𝑡𝑠};
9 return 𝑃𝑡𝑠

10 Procedure getHash(G, 𝑣)
11 if 𝑣 ∈ 𝑉𝐴 then

12 return hash({(𝑣, true)});
13 𝑉𝑎𝑙𝑠 ← [hash(𝑣)];

14 for 𝑠𝑟𝑐
𝜙
−→ 𝑣 in G do

15 𝐻1 ← hash(𝜙);
16 𝐻2 ← getHash(G, 𝑠𝑟𝑐);
17 𝑉𝑎𝑙𝑠 ← 𝑉𝑎𝑙𝑠 + [𝐻1, 𝐻2];
18 return hashCombine(𝑉𝑎𝑙𝑠);
19 Procedure isMustAlias(G, 𝑝 , 𝑞)
20 return getHash(G, 𝑝) == getHash(G, 𝑞);
21 Procedure aliasCond (𝑣1, 𝑣2)
22 𝑆1 ← getPts(𝑣1);
23 𝑆2 ← getPts(𝑣2);
24 return

∨{𝜙1 ∧ 𝜙2 | (𝑜,𝜓1) ∈ 𝑆1, (𝑜,𝜓2) ∈ 𝑆2};

order and add the new value flow edges q3
c3−−→ x3 and q0

¬c3−−−→ x3
(𝑇2 is blocked when matching the root of 𝑇1).

4.2 Optimize Path-sensitive Alias Reasoning

Algorithm 1 presented in §4.1 necessitates the computation of both

must-aliasing and may-aliasing:

(1) Must-alias information is required in determining the must-kill

relation (Definition 3.1) and finding the anchor point of a load

operation (Definition 4.1).

(2) May-alias information is required in finding the store candidates

for a given load operation (Line 4 of Algorithm 1) and computing

the matching condition between a load and a store (Line 33 of

Algorithm 1).

To determine whether two pointers may or must point to the

same memory location, a path-sensitive analysis normally tracks

the related information in the guarded points-to sets. For a given
variable 𝑣 and its guarded points to set 𝑃𝑡𝑠 , (𝑜,𝜓) ∈ 𝑃𝑡𝑠 indicates
that 𝑣 points to 𝑜 under the condition𝜓 . Our goal is to compute both

must-alias and may-alias information in a precise, path-sensitive

manner, while mitigating the performance issues normally seen in

a path-sensitive analysis.

Must Alias Inference Based On Syntactical Equivalence. By

definition, p and q are must-aliases if they always point to the

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

same target under the logically equivalent condition, which can be

verified by computing and comparing their guarded points-to sets.

However, this straightforward method induces high overhead

because it is expensive to compute the guarded points-to set due

to the inherent complexity of a path-sensitive analysis. As shown

by the procedure getPts of Algorithm 2, to compute 𝑃𝑡𝑠 for 𝑣 , we

stop at the base case when 𝑣 is an allocation site (Lines 2–3) and

recursively apply the procedure to each incoming edge 𝑠𝑟𝑐
𝜙
−→ 𝑣 inG.

𝑃𝑡𝑠 is updated by conjoining the condition 𝜙 to the guarded points-

to set 𝑆𝑟𝑐𝑃𝑡𝑠 of 𝑠𝑟𝑐 (Line 7) and merging with the existing result

(Line 8). As G gets larger, both the size of 𝑃𝑡𝑠 and the condition

formula may become explosive, making it challenging to infer must-

aliases.

Our approach addresses this challenge by performing an approx-

imate must-alias analysis: p and q are must-aliases if they always

point to the same target under the syntactically equivalent condi-
tion. Moreover, we boost the checking of syntactical equivalence

by computing a hash value for each node in G based on a Merkle

hash scheme.

As shown by the procedure getHash in Algorithm 2, the hash

value of a node 𝑣 is aggregated from the hash of the current node

(Line 13), the hash of the condition 𝜙 labeling the incoming edge

of 𝑣 (Line 15), and the hash recursively computed for the incom-

ing node 𝑠𝑟𝑐 of 𝑣 (Line 16). Notice how the structure of getHash
mirrors that of getPts, but instead of keeping the points-to targets
separate, the hash value compactly aggregates the points-to struc-

ture information. Checking for must-aliasing is then easily done

by comparing the hash values (Lines 19–20).

Directly Computing TheMay-Alias Condition.When the must-

kill relation does not contribute to enabling strong updates, Tuna

falls back to using blocking conditions to support path-sensitive

strong updates (Lines 11–15 of Algorithm 1). We aim to further

improve the performance of load-store matching in this stage.

In Tuna, we directly compute the set of candidate store state-

ments for a given load (Line 4 of Algorithm 1) and the aliasing

condition required for the specific load-store match (Line 33 of

Algorithm 1). The computation of the aliasing condition is done

by aggregating the conditions from the guarded points-to sets of

both variables, as shown in Lines 21–24 of Algorithm 2. By directly

computing the may-alias condition, we avoid the repetitive store

list traversal for different points-to targets in the existing work

(c.f. §3.1).

5 Evaluation

We implement Tuna based on LLVM [22]. Following existing liter-

ature on path-sensitive data dependence analysis [3, 14, 33, 34, 39],

Tuna replaces each loop in the control flow graph and call graph

of the program with a finite unrolling of its body.

Our evaluation aims to answer the following research questions:

• RQ1: How much can Tuna boost the performance of indirect

dependencies resolving in path-sensitive data dependence analy-

sis? Does the improved performance of Tuna lead to increased

state coverage in static analysis?

• RQ2: How often are strong updates enabled in Tuna by utilizing

the must-kill relation?

• RQ3: How do the design choices of Tuna affect its performance?

ID Program Size (KLOC) #Funcs #Loads #Stores

0 x264 96 0.8K 28.2K 10.1K

1 omnetpp 134 15.7K 66.9K 21.8K

2 povray 170 2.1K 57.6K 14.2K

3 cactusBSSN 257 3.6K 325.6K 98.5K

4 perlbench 362 5.3K 178.5K 58.5K

5 cam4 407 5.1K 390.9K 174.5K

6 parest 427 66.2K 302.3K 116.3K

7 xalancbmk 520 38.8K 139.7K 49.5K

8 gcc 1304 26.9K 434.5K 108.9K

9 blender 1577 56.8K 538.4K 168.3K

10 libz 41 0.1K 3.2K 1.8K

11 librdkafka 167 2.6K 74.2K 43.1K

12 libtorrent 213 86.2K 83.1K 62K

13 curl 297 6.8K 35.1K 15.7K

14 redis 325 5.7K 75.2K 43.9K

15 bitcoin 716 16.9K 108.1K 85.2K

16 php 1012 18.2K 310K 130.8K

17 ffmpeg 1346 23.2K 584.1K 316.5K

18 qemu 1809 24.4K 160.6K 75.5K

19 mysql 2030 100.5K 719.1K 458.5K

Table 1: Subjects for evaluation. Subjects 0–9 are from the

SPEC CPU@2017 benchmark, while Subjects 10–19 are well-

known open-source software at their latest versions.

Baseline. We compare Tuna with Falcon [44], the state-of-the-

art in path-sensitive data dependence analysis. We obtain the source

code of Falcon from its authors and modify it so that we could tune

its limitation parameters (detailed later).

Subjects. As shown in Table 1, we perform an evaluation on 10

programs (ID 0–9) from the standard benchmark SPEC CPU@2017

as well as 10 open-source projects (ID 10–19). These subjects are

widely used in the evaluation of previous works, cover diverse ap-

plication domains, and pose significant challenges to static analysis

due to their large size (up to several million lines of code).

We also list the number of functions and the number of load /

store instructions in the LLVM bitcode representation in Table 1.

For instance, to handle mysql, over 100K SVFGs will need to be

constructed (one for each function) and the load-store matching

process needs to be performed over 719K times (for every load

instruction), posing significant challenges to the static analyzer.

Environment. All the experiments were performed on a com-

puter with dual 20-core processors Intel(R) Xeon(R) CPU E5-2698

v4@2.20GHz and 500GB physical memory, running Ubuntu-20.04.

In the experiments, each static analyzer is run under a single-

threaded mode, where the computation resource is limited to four

hours of time and 300GB of memory.

Configurations. As discussed in §3.1, in practice, path-sensitive

data dependence analysis often sacrifices soundness by limiting

its state space exploration. In our experiments, we evaluate the

performance of Falcon and Tuna under the same default parameters.

Also, we examine whether Tuna can contribute to relaxing the

limiting parameters such that the static analyzer could explore

a larger state space. Specifically, we will tune the following two

parameters:

• --pts-limit: The maximum number of points-to targets that

are tracked path-sensitively.

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

• --vals-limit: The maximum number of incoming values that

could propagate to a load statement.

For all experiments, we set up both Falcon and Tuna to unroll

each loop in the program’s control flow graphs once and to directly

break the back edges in the call graphs. We discuss the effects of

varying the loop unrolling factor in §5.3.1.

5.1 Effectiveness of Tuna

To demonstrate how Tuna improves the performance over Falcon,

we run them on the selected subjects for the task of SVFG construc-

tion. Both of them perform path-sensitive data dependence analysis

for resolving indirect dependencies, but differ in how strong updates

are enabled.

Fig. 8 demonstrates both the elapsed time and peak memory of

Falcon and Tuna under the default configuration (--pts-limit
is set to 128 and --vals-limit is set to 1000). On average, Tuna

achieves a 8.0x speed up over Falcon, consumes only 43.3% of mem-

ory, and successfully analyzes four subjects where Falcon fails due

to out of memory (OOM) issues.

We further run Falcon and Tuna under a set of nine (ID 0–8)

configurations (X, Y) that are increasingly relaxed, where X and Y
denote the value for --pts-limit and --vals-limit respectively.

We set the values of (X, Y) by doubling or halving the default

values (128, 1000) (the default configuration is given the ID 4),

leading to the more relaxing configurations (ID 5–8) and the more

restrictive configurations (ID 0–3). Thus, each tool performs 180

analysis runs for the 20 subjects in total.

The result is shown in Fig. 9. Compared with Falcon, Tuna

achieves a speedup ranging from 1.2x to 31.5x, while the peak mem-

ory usage is around 39.5%–62.9%. As the figure shows, the improve-

ment of Tuna becomes increasingly significant as the configuration

becomes more relaxed. In summary, Falcon fails to complete 38

analysis runs due to timeouts or out-of-memory (OOM) errors,

while Tuna fails in only four runs, all of which are also among the

runs where Falcon fails.

The capability of Tuna to run path-sensitive data dependence

analysis in a more relaxed configuration leads to its better state

coverage. Table 2 demonstrates how the size of the constructed

SVFGs increases as the configuration is relaxed (we measure the

total count of nodes and edges in the SVFG as a proxy for its size).

In summary, relaxing the configuration leads to 2.2x more nodes

and edges in the SVFGs on average (maximum increase is 13.6x),

thus capturing more value flows in the program.

Answer to RQ1: Tuna significantly improves the performance

over Falcon in both run time and memory usage, and enables the

path-sensitive data dependence analysis to explore a larger state

space more efficiently.

The improvements of Tuna lies in its ability to perform strong

updates early by utilizing the must-kill relation to avoid the costly

path-sensitive analysis. We further study how often such strong

updates can be enabled. For this purpose, we measure the number

of tree root nodes 𝑁1 traversed in Lines 11–15 of Algorithm 1

versus the total number of store operation candidates 𝑁2 (i.e., the

total number of nodes contained in 𝐹1 at Line 6 of Algorithm 1).

Our approach reduces the scope of path-sensitive reasoning from

ID Max num Delta num ID Max num Delta num

0 1213.2K 11.8K 10 15511.5K 14375.0K

1 5700.3K 1972.3K 11 11429.1K 3720.1K

2 3561.1K 62.2K 12 4994.1K 1394

3 18838.6K 784.8K 13 3587.8K 810.2K

4 68578.4K 54557.6K 14 33784.6K 16640.7K

5 14039.0K 139.4K 15 53378.6K 16596.4K

6 13466.2K 657.7K 16 77480.1K 53135.8K

7 8411.1K 346.8K 17 227345.8K 163744.3K

8 48064.1K 8799.3K 18 23637.3K 442.4K

9 24512.1K 943.5K 19 132747.2K 29657.5K

Table 2: Statistics variation for the SVFGs constructed under

the nine different configurations. For the 20 programs (IDs 0

to 19), the column labeled "Max num" represents the maxi-

mumvalue of the total count of nodes and edges in the SVFGs

across all configurations, calculated as𝑚𝑎𝑥 (Σ(|𝑁 | + |𝐸 |)). Sim-

ilarly, the column labeled "Delta num" represents the dif-

ference between the maximum and minimum total counts

of nodes and edges in the SVFGs across all configurations,

calculated as𝑚𝑎𝑥 (Σ(|𝑁 | + |𝐸 |)) −𝑚𝑖𝑛(Σ(|𝑁 | + |𝐸 |)).

𝑁2 nodes to 𝑁1 nodes, and hence the smaller the ratio
𝑁1

𝑁2

, the

more strong updates are enabled efficiently based on the must-kill

relation.

As shown by Fig. 9, averaged across the nine configurations,

Tuna only needs to traverse 27.8% of the store candidates in Lines

11–15 of Algorithm 1, indicating that most of the strong updates

are efficiently enabled by the must-kill relation in our approach.

Answer to RQ2: Most of the strong updates opportunities are

enabled by the must-kill relation in Tuna, reducing the path-

sensitive reasoning to only 27.8% of the store candidates on aver-

age.

5.2 Design choices of Tuna

In this section, we study the contribution of the key designs of Tuna:

must-aliasing computation and incremental kill forest construction.

5.2.1 Must Aliasing Computation. We compute must-aliases based

on syntactical equivalence checking of the points-to structure. We

compare this choice with the standard approach, i.e., determining

must-aliasing by checking the logical equivalence of the guarded

points-to sets, which we use the variant Tuna_1 to denote. Across

the nine configurations, We found that Tuna_1 is 1.3 to 33.3 times

slower (average slowdown is 9.3x) and consumes 1.7 to 6.2 times

(average increase is 3.1x) of peak memory compared with Tuna.

5.2.2 Incremental Kill Forest Construction. For a given load op-

eration, we construct the must-kill forest incrementally from the

existing forest of its immediate anchor point. We compare with the

naive approach where each time the kill forest is constructed from

scratch accounting for all reachable store operations, which we use

the variant Tuna_2 to denote. We found that Tuna_2 is 1.1 to 2.5

times slower (average slowdown is 1.6x) compared with Tuna (the

memory consumption is similar).

Answer to RQ3: Both the designs in must-alias computation and

incremental kill forest construction are critical to the performance

of Tuna.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

Figure 8: Run time and memory comparison between Falcon and Tuna under the default configuration.

Figure 9: Illustration of the improvements of Tuna over Fal-

con across a set of nine configurations. We set –pts-limit
to [8, 16, 32, 64, 128, 256, 512, 1024, 2048] and –vals-limit to

[62, 125, 250, 500, 1000, 2000, 4000, 8000, 16000] for Config ID 0–

8 respectively. The top plot shows the speed up, the middle

plot shows the percentage of peak memory usage, and the

bottom plot shows proportion of store operation candidates

left for path-sensitive reasoning. The data is averaged across

the 20 program subjects.

5.3 Discussion

5.3.1 The Effects for Loop Unrolling. In the original paper [44],

Falcon also directly breaks the back edges in the call graphs,
2
but it

sets the loop unroll count to 2. Additionally, the values for other lim-

itation parameters are set to a relatively low number (--pts-limit
is set to 3 and --vals-limit is set to 10

3
).

We have attempted to rerun all our experiments under the loop

unroll count 2 for both Falcon and Tuna. Out of the 180 analysis

runs (recall that we have tested nine configurations for each of the

20 subjects), Falcon fails to complete on 111 (61.7%) runs due to

2
This was confirmed with the authors of Falcon.

3
We discover such numbers from the implementation code.

Figure 10: Performance comparison between Tuna and Fal-

con over the nine configurations when the loop unroll count

is set to 2. The configurations are the same as Fig. 9.

either timeout or OOM, while Tuna fails to complete on 58 (32.2%)

runs. Tuna still achieves a speedup ranging from 9.2x to 26.0x,

while the peak memory usage is around 46.7%–70.0% (c.f. Fig. 10).

Increasing the loop unroll count hinders path-sensitive data

dependence analysis by heightening code complexity, which we

identify as an orthogonal problem for future investigation.

5.3.2 Can Falcon Benefit from Syntactical Equivalence Checking?
Although Tuna uses syntactical equivalence checking, this ap-

proach is unsuitable for improving Falcon’s performance:

• Unlike our method, Falcon does not infer must-aliases (it com-

putes conditional points-to results through satisfiability checking,

c.f. Fig. 3). Thus, the syntactical equivalence checking as in Tuna

could not be directly applied.

• We tested an alternative to Falcon’s standard satisfiability check-

ing by using a simpler syntactical equivalence check. This method

treats any condition as satisfiable unless it is syntactically equiv-

alent to “false.” However, this approach was counterproductive,

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

slowing performance by an average of 2.5x because it conser-

vatively approved too many conditions, leading to a significant

increase in the number of paths needing analysis.

5.3.3 Effects of Relaxing the Limitation Parameters. In §5.1, we

demonstrated that Tuna efficiently performs path-sensitive data

dependence analysis in a more relaxed configuration, resulting in

value flow graphs that are more “complete” (c.f. Table 2). How-

ever, It is important to note that discovering more value flows

does not automatically lead to detecting more bugs. Designing an

effective bug detector from a value flow graph is a separate and

complex challenge, as practical detectors often rely on trade-offs

like under-approximate algorithms [18] and require sophisticated

search strategies [21] to be effective.

6 Related Work

Data dependence analysis. Data dependence analysis [15] (also

termed value flow analysis [9, 33, 38]) is a powerful technique that

tracks value propagation in the program by sparsely following the

def-use relations and skipping the irrelevant statements. Due to the

efficiency benefits, data dependence analysis is widely adopted for

statically finding bugs in large and realistic software [26, 33, 39, 43].

Reasoning about pointers and resolving indirect memory depen-

dencies is a major bottleneck in data dependence analysis. Most

existing works adopt a layered approach: A global, conservative

points-to analysis approximates the def-use information and the

subsequent analysis attempts to recover the precision (such as

path-sensitivity) [6, 9, 26, 36, 39, 41, 43]. However, they suffer

from the spurious value flow propagation induced by the imprecise

pre-analysis [33]. Falcon [44] breaks the layered design by fusing

path-sensitivity in a modular analysis: An intra-procedurally path-

sensitive pointer analysis resolves local dependencies and function

side-effects, where the discovery of inter-procedural path condi-

tions is piggybacked on the client (e.g., the specific bug detection

task). In this work, Tuna further improves over the state-of-the-

art [44] by tackling the problem of inefficient path-sensitive strong

updates during the resolving of indirect dependencies.

Path-sensitive static analysis. Path-sensitive static analysis [6,

11, 14, 24, 26, 42, 44] comes in many flavours depending on (1) What

analysis facts are tracked in separation (e.g., the path-sensitivity

could be added during pointer analysis [44] or only be added at the

later stage of bug detection [24]) and (2) What is the strategy to

determine the separation (e.g., the descriptor of “paths” could be

full-fledged first order logic constraints [42] or conditions collected

from a propositional abstraction of the program [44]).

As a good balance between precision and efficiency, we follow

the design of Falcon [44]: points-to facts are tracked path-sensitively

and modularly, where the path conditions are constructed from a

propositional abstraction of the program.

Strong updates in pointer / alias analysis. Strong update [35]

refers to overwriting the existing data flow facts (e.g., the points-to

target) in a flow-sensitive pointer analysis. While crucial for achiev-

ing high precision, enabling strong updates can also significantly

hurt the performance [13, 19, 25, 37] (essentially making the flow

function non-monotone [2]).

In the context of path-sensitive pointer analysis, the concept of

strong update is generalized to accounting for the specific condition

under which the old fact is invalidated, where all existing works

rely on the formulation of blocking conditions [12, 13, 44]. To the

best of our knowledge, Tuna is the first to tackle the efficiency

problem of performing strong updates in the path-sensitive analysis

for pointer-induced memory dependencies.

Must alias analysis. Must alias analysis has been used to en-

able strong updates to refine the results of a flow- and context-

insensitive may alias analysis, which contributes to improving the

precision of null pointer dereference detection [27], typestate veri-

fication [16], and termination analysis [30]. These works rely on

the conservative may-alias result to determine when strong update

is possible, e.g., must-aliasing is discovered when the points-to set

contains a single memory object. Meanwhile, must-aliasing infor-

mation could be discovered in shape analysis [8] such as in recency

abstraction [4] and the use of three-valued logic [32]. These ap-

proaches distinguish between summary and concrete heap locations

by maintaining logical predicates that could lead to exponential

complexity.

In contrast, our must-alias inference is precise (path-sensitive,

meaning more must-alias pairs are discovered) yet efficient (syntac-

tical equivalence checking based on hash computation), enabling

Tuna to perform strong updates in a path-sensitive data depen-

dence analysis more efficiently.

For analyzing higher-order languages, methods like abstract

counting [29] and singleness inference [17, 20] have been employed

to compute must-aliases, which facilitate advanced compiler opti-

mizations such as closure conversion [29]. These techniques are

flow-sensitive, require the singleness property for abstract objects

to deduce must-aliases (noting that our must alias analysis allows

a variable to reference different memory objects along distinct

paths), and are specifically tailored to address unique challenges

in higher-order languages, such as implicit control flow [20] and

recursion [17]. Consequently, these methods complement our work.

Under-approximate static bug finders. For practical bug find-

ing in large and realistic codebases, static analyzers often sacri-

fices soundness by exploring an under-approximation of the state

space [1, 7, 21, 23, 33]. Tuna follows the same design and our eval-

uation shows that the performance improvement of Tuna is even

more significant when the limitation parameters are more relaxed,

showing its potential for enabling the static analyzer to explore a

larger state space.

7 Conclusion

We present Tuna, a technique that accelerates path-sensitive data

dependence analysis. By identifying must-kill relations between

memory stores, Tuna enables efficient strong updates without

costly path-sensitive reasoning. Evaluation shows Tuna signifi-

cantly outperforms the state of the art in runtime, memory us-

age, and state coverage. The artifact of Tuna is available at https:

//figshare.com/s/0830800e211d5544f9d9?file=52911869.

Acknowledgments

We thank the reviewers for their valuable comments. This work is

funded by research grants from Ant Group and ByteDance.

https://figshare.com/s/0830800e211d5544f9d9?file=52911869
https://figshare.com/s/0830800e211d5544f9d9?file=52911869

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Yiyuan Guo and Charles Zhang

References

[1] 2022. The Clang Static Analyzer. https://clang-analyzer.llvm.org/. Online;

accessed 28-July-2022.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman

Publishing Co., Inc., USA.

[3] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and Precise Extended

Static Checking. In Proceedings of the 30th International Conference on Software
Engineering (Leipzig, Germany) (ICSE ’08). Association for Computing Machinery,

New York, NY, USA, 211–220. doi:10.1145/1368088.1368118

[4] Gogul Balakrishnan and Thomas Reps. 2006. Recency-Abstraction for heap-

allocated storage. In Proceedings of the 13th International Conference on Static
Analysis (Seoul, Korea) (SAS’06). Springer-Verlag, Berlin, Heidelberg, 221–239.
doi:10.1007/11823230_15

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A Few

Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World.

Commun. ACM 53, 2 (Feb. 2010), 66–75. doi:10.1145/1646353.1646374

[6] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. Thresher:

Precise Refutations for Heap Reachability. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Seattle,

Washington, USA) (PLDI ’13). Association for Computing Machinery, New York,

NY, USA, 275–286. doi:10.1145/2491956.2462186

[7] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018.

RacerD: Compositional Static Race Detection. Proc. ACM Program. Lang. 2,
OOPSLA, Article 144 (oct 2018), 28 pages. doi:10.1145/3276514

[8] Bor-Yuh Evan Chang, Cezara Drăgoi, Roman Manevich, Noam Rinetzky, and

Xavier Rival. 2020. Shape Analysis. Foundations and Trends® in Programming
Languages 6, 1–2 (2020), 1–158. doi:10.1561/2500000037

[9] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practical Memory

Leak Detection Using Guarded Value-Flow Analysis. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(San Diego, California, USA) (PLDI ’07). Association for Computing Machinery,

New York, NY, USA, 480–491. doi:10.1145/1250734.1250789

[10] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth

Zadeck. 1991. Efficiently computing static single assignment form and the control

dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451–490.

[11] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-Sensitive Program

Verification in Polynomial Time. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming Language Design and Implementation (Berlin, Germany)

(PLDI ’02). Association for Computing Machinery, New York, NY, USA, 57–68.

doi:10.1145/512529.512538

[12] Isil Dillig, Thomas Dillig, and Alex Aiken. 2010. Fluid Updates: Beyond Strong vs.

Weak Updates. In Proceedings of the 19th European Conference on Programming
Languages and Systems (Paphos, Cyprus) (ESOP’10). Springer-Verlag, Berlin,
Heidelberg, 246–266.

[13] Isil Dillig, Thomas Dillig, Alex Aiken, andMooly Sagiv. 2011. Precise and compact

modular procedure summaries for heap manipulating programs. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Jose, California, USA) (PLDI ’11). ACM, New York, NY, USA,

567–577.

[14] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang.

2019. SMOKE: Scalable Path-Sensitive Memory Leak Detection for Millions

of Lines of Code. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). 72–82. doi:10.1109/ICSE.2019.00025

[15] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program

Dependence Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst.
9, 3 (July 1987), 319–349. doi:10.1145/24039.24041

[16] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.

2008. Effective typestate verification in the presence of aliasing. ACM Trans. Softw.
Eng. Methodol. 17, 2, Article 9 (May 2008), 34 pages. doi:10.1145/1348250.1348255

[17] Kimball Germane and Jay McCarthy. 2021. Newly-single and loving it: improving

higher-order must-alias analysis with heap fragments. Proc. ACM Program. Lang.
5, ICFP, Article 96 (Aug. 2021), 28 pages. doi:10.1145/3473601

[18] Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives

Theorem for a Static Race Detector. Proc. ACM Program. Lang. 3, POPL, Article
57 (jan 2019), 29 pages. doi:10.1145/3290370

[19] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions

of lines of code. In Proceedings of the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO ’11). IEEE Computer Society,

USA, 289–298.

[20] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. 1998.

Single and loving it: must-alias analysis for higher-order languages. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Diego, California, USA) (POPL ’98). Association for Computing

Machinery, New York, NY, USA, 329–341. doi:10.1145/268946.268973

[21] Yoonseok Ko and Hakjoo Oh. 2023. Learning to Boost Disjunctive Static Bug-

Finders. In Proceedings of the 45th International Conference on Software Engineering
(Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 1097–1109. doi:10.1109/

ICSE48619.2023.00099

[22] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong

program analysis amp; transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. 75–86. doi:10.1109/CGO.2004.

1281665

[23] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and PeterW.

O’Hearn. 2022. Finding Real Bugs in Big Programs with Incorrectness Logic.

Proc. ACM Program. Lang. 6, OOPSLA1, Article 81 (apr 2022), 27 pages. doi:10.
1145/3527325

[24] Wei Le and Mary Lou Soffa. 2008. Marple: A Demand-Driven Path-Sensitive

Buffer Overflow Detector. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Atlanta, Georgia) (SIGSOFT
’08/FSE-16). Association for Computing Machinery, New York, NY, USA, 272–282.

doi:10.1145/1453101.1453137

[25] Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with

efficient strong updates. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL
’11). Association for Computing Machinery, New York, NY, USA, 3–16. doi:10.

1145/1926385.1926389

[26] V Benjamin Livshits and Monica S Lam. 2003. Tracking pointers with path and

context sensitivity for bug detection in C programs. In Proceedings of the 9th
European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering. 317–326.

[27] Xiaodong Ma, Ji Wang, and Wei Dong. 2008. Computing Must and May Alias to

Detect Null Pointer Dereference. In Leveraging Applications of Formal Methods,
Verification and Validation, TizianaMargaria and Bernhard Steffen (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 252–261.

[28] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and Zhe Yang.

2004. PSE: explaining program failures via postmortem static analysis. SIGSOFT
Softw. Eng. Notes 29, 6 (Oct. 2004), 63–72. doi:10.1145/1041685.1029907

[29] Matthew Might and Olin Shivers. 2006. Improving flow analyses via ΓCFA:
abstract garbage collection and counting. SIGPLAN Not. 41, 9 (Sept. 2006), 13–25.
doi:10.1145/1160074.1159807

[30] undefinedurica Nikolić and Fausto Spoto. 2012. Definite expression aliasing

analysis for java bytecode. In Proceedings of the 9th International Conference on
Theoretical Aspects of Computing (Bangalore, India) (ICTAC’12). Springer-Verlag,
Berlin, Heidelberg, 74–89. doi:10.1007/978-3-642-32943-2_6

[31] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedu-

ral Dataflow Analysis via Graph Reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Fran-

cisco, California, USA) (POPL ’95). Association for Computing Machinery, New

York, NY, USA, 49–61. doi:10.1145/199448.199462

[32] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. 2002. Parametric shape

analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24, 3 (May 2002),

217–298.

[33] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles

Zhang. 2018. Pinpoint: Fast and Precise Sparse Value Flow Analysis for Mil-

lion Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (Philadelphia, PA, USA) (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 693–706.

doi:10.1145/3192366.3192418

[34] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2021. Path-sensitive

sparse analysis without path conditions. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, 930–943. doi:10.1145/3453483.3454086

[35] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found.
Trends Program. Lang. 2, 1 (apr 2015), 1–69. doi:10.1561/2500000014

[36] Gregor Snelting, Torsten Robschink, and Jens Krinke. 2006. Efficient path condi-

tions in dependence graphs for software safety analysis. ACM Trans. Softw. Eng.
Methodol. 15, 4 (oct 2006), 410–457. doi:10.1145/1178625.1178628

[37] Yulei Sui and Jingling Xue. 2016. On-demand strong update analysis via value-

flow refinement. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 460–473. doi:10.

1145/2950290.2950296

[38] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-

ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,

New York, NY, USA, 265–266. doi:10.1145/2892208.2892235

[39] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static Memory Leak Detection Us-

ing Full-Sparse Value-Flow Analysis. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA
2012). Association for Computing Machinery, New York, NY, USA, 254–264.

doi:10.1145/2338965.2336784

https://clang-analyzer.llvm.org/
https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1007/11823230_15
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/2491956.2462186
https://doi.org/10.1145/3276514
https://doi.org/10.1561/2500000037
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/512529.512538
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/3473601
https://doi.org/10.1145/3290370
https://doi.org/10.1145/268946.268973
https://doi.org/10.1109/ICSE48619.2023.00099
https://doi.org/10.1109/ICSE48619.2023.00099
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3527325
https://doi.org/10.1145/3527325
https://doi.org/10.1145/1453101.1453137
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/1926385.1926389
https://doi.org/10.1145/1041685.1029907
https://doi.org/10.1145/1160074.1159807
https://doi.org/10.1007/978-3-642-32943-2_6
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3453483.3454086
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1178625.1178628
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2338965.2336784

Efficient Strong Updates For
Path Sensitive Data Dependence Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

[40] Yulei Sui, Sen Ye, Jingling Xue, and Pen-Chung Yew. 2011. SPAS: scalable path-

sensitive pointer analysis on full-sparse SSA. In Proceedings of the 9th Asian
Conference on Programming Languages and Systems (Kenting, Taiwan) (APLAS’11).
Springer-Verlag, Berlin, Heidelberg, 155–171.

[41] Wei Wang, Clark Barrett, and Thomas Wies. 2017. Partitioned Memory Models

for Program Analysis. In Verification, Model Checking, and Abstract Interpretation,
Ahmed Bouajjani and David Monniaux (Eds.). Springer International Publishing,

Cham, 539–558.

[42] Yichen Xie and Alex Aiken. 2005. Scalable Error Detection Using Boolean

Satisfiability. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Long Beach, California, USA) (POPL

’05). Association for Computing Machinery, New York, NY, USA, 351–363.

doi:10.1145/1040305.1040334

[43] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-temporal context

reduction: a pointer-analysis-based static approach for detecting use-after-free

vulnerabilities. In Proceedings of the 40th International Conference on Software
Engineering (, Gothenburg, Sweden,) (ICSE ’18). Association for Computing Ma-

chinery, New York, NY, USA, 327–337. doi:10.1145/3180155.3180178

[44] Peisen Yao, Jinguo Zhou, Xiao Xiao, Qingkai Shi, RongxinWu, and Charles Zhang.

2024. Falcon: A Fused Approach to Path-Sensitive Sparse Data Dependence

Analysis. Proc. ACM Program. Lang. 8, PLDI, Article 170 (June 2024), 26 pages.
doi:10.1145/3656400

https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1145/3180155.3180178
https://doi.org/10.1145/3656400

	Abstract
	1 Introduction
	1.1 Inefficient Path-sensitive Strong Updates
	1.2 Our Solution

	2 Preliminaries
	3 Tuna in a nutshell
	3.1 The Scalability Challenge
	3.2 Identify Strong Updates Opportunities
	3.3 Algorithmic Optimizations

	4 Analysis algorithm
	4.1 Efficient Strong Updates Via Kill Relation
	4.2 Optimize Path-sensitive Alias Reasoning

	5 Evaluation
	5.1 Effectiveness of Tuna
	5.2 Design choices of Tuna
	5.3 Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

