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Abstract

Path-sensitive data dependence analysis is a powerful technique
widely used in static vulnerability detection. One of the central
challenges is how to resolve indirect data dependencies induced by
pointer operations: the value loaded from a memory location may
depend on different values stored before. Resolving indirect data
dependencies in a path-sensitive manner significantly improves the
analysis precision, but also induces high overhead that limits its
scalability.

We observe that much of the computation effort in path-sensitive
data dependence analysis is spent on performing strong updates
during load-store matching: a stored value propagates to a load
statement only if it is not overwritten by other values stored to
the same memory location during the propagation. Answering this
question path-sensitively is extremely challenging and often leads
to a state explosion that precludes efficient static analysis.

To improve the efficiency for performing strong updates in path-
sensitive data dependence analysis, our key insight is that the re-
lation among multiple store statements could be determined in
stages: most of the easy cases are handled efficiently by inferring a
must-kill relation among the heap store statements, reserving the
computationally expensive path-sensitive analysis for the rest. We
design a tree-like data structure to encode both the control flow and
alias information, which incrementally updates the relation during
the analysis. Experiments have shown significant speed-ups and
improved state coverage in static analysis through the algorithmic
improvements of path-sensitive strong updates.
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- Software and its engineering — Software verification and
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1 Introduction

Data dependence analysis [15], which tracks the def-use relation
among program variables, underpins a great many static analysis
techniques for bug finding, such as memory leak, use after free, and
null pointer dereference [26, 33, 39, 43]. The central challenge in
data dependence analysis is to resolve the indirect dependencies in-
duced by pointer operations. For instance, in the code *p = k; t=xq,
the variable t is data dependent on k (or equivalently, the value of k
may flow to t) if p and q refer to the same memory location.

For statically detecting bugs in large and realistic systems, the
analyzer is often expected to track complex value flows involving
deep calling contexts, extensive memory operations, and sophis-
ticated path correlations [5, 33]. Path-sensitive data dependence
analysis [6, 28, 33, 40, 43, 44] is a promising direction to achieve
this goal and recent advancements [33, 44] have demonstrated
significant improvements in terms of both precision and analysis
efficiency.

1.1 Inefficient Path-sensitive Strong Updates

To resolve the indirect dependencies precisely, a path-sensitive data
dependence analysis tracks the condition for how value flows into
and out of the heap. Moreover, to precisely infer heap contents,
strong updates [35] are enabled by inferring the condition ¢ under
which storing to a heap location may overwrite its old containing
value [44]. While path-sensitivity and strong updates together bring
better precision, they also lead to significant scalability challenges.

Falcon [44], the state-of-the-art approach, pairs path-sensitivity
with a modular design for better efficiency. Specifically, a bottom-up,
path-sensitive pointer analysis is carried out to resolve local indirect
dependencies and function side-effects, where the more complex
inter-procedural path conditions are discovered on-demand during
the bug detection phase. However, we observe that the other axis,
i.e., strong updates, still constitutes a major performance bottle-
neck in path-sensitive data dependence analysis, especially for the
realistic programs where sheer number of load / store statements
and complex points-to relations are present.

Consider the code example shown in Fig. 1a (ignore Line 13 for
now). To resolve indirect dependencies, the analysis needs to match
the three load statements at Line 15 (x1), 18 (x2), and 21 (x3) with
the three store statements at Line 10 (q1), 12 (g2), and 17 (g3). A
conservative answer is any of {q1, g2, g3} may flow into ! any of
{x1, x2,x3}, which is highly imprecise. In contrast, a path-sensitive
data dependence analysis will deduce the condition for the value
stored at Line i (I;) to flow into the value loaded at Line j (I;). For

!In this paper, we consider the SSA form [10] of the program, where variables and
their corresponding values can be used interchangeably.
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instance, the table cell at the column [;; and the row I5; of Fig. 1b
indicates that g2 flows to x3 under the condition —=c2 A =c3.
However, the precise result for load-store matching comes at a
price. To support strong updates, the candidate store statements
providing the incoming values need to be enumerated exhaustively
for performing case analysis, which leads to a blowup of conditions
that throttles the performance. For instance, the statement at /;5
of Fig. 1a loads the pointer p that could point to either o4 or o ( 0;
denotes the memory object allocated at Line i). As shown by Fig. 1c,
the conditions for g3, g2, and g1 to be first stored into o4 and later
loaded into x2 are as follows (denoted by cond(q; 2, x2)):

e cond(q3 2, x2): The condition equals c1 A c3, where c1 is the
condition for n to point to o4 (n equals p due to I and I;4) and c3
is the condition guarding I;7.

cond(g2 2, x2): The condition includes (1) c1 A =c2 A ¢3 and

(2) =cond(q3 2, x2). The first part contains c1 for p to point to
04, ~c2 and c3 for the execution to reach [;; and [;5 respectively.
The second part is a blocking condition: for g2 to flow into x2,
the effect of storing g3 at I;; must be blocked.

cond(q1 2 x2): Similarly, for q1 to flow into x2 via o4, c1 A
c2 A c3 must be satisfied and the effects of [;; and [;; need
to be blocked (the blocking conditions —~cond(q3 2, x2) and

—cond(q2 2, x2)).

Essentially, the analysis enables strong updates through path-
sensitive reasoning by blocking the effects of other store statements
that could interfere with the result of the particular load. In Fig. 1c,

conjoining the blocking conditions makes cond(qg2 SN x2) and

cond(q1 2 x2) unsatisfiable, meaning that only g3 can flow to x2
via 04. While this improves the precision, it could easily produce
a blow-up of blocking conditions and significantly hurts the effi-
ciency: to match the load statement I; with the store statement [;,
all the other store statement [ lying between [; and [; need to be
“blocked”, leading to a linear number of extra blocking conditions,
each of which might itself be a complex formula.

1.2 Our Solution

Our goal is to maintain the high precision benefits of path-sensitivity
and strong updates for data dependence analysis, while greatly im-
proving the analysis efficiency. Our key insight is that instead of
solely relying on the determination of path conditions to enable
strong updates, we can infer a must-kill relation among the store
statements based on a synergy of must-alias analysis and control
flow analysis. The must-kill relation is computed efficiently and can
help to discover the strong update opportunities for the majority
of cases, reserving the computationally expensive path-sensitive
analysis only for the rest.

For resolving the indirect dependencies of l;3 in Fig. 1a, our
approach will infer that the store at l;; must kill the stores at [;o
and l;, based on the following reasons:

(1) Control Flow Dominance: Any execution path from o or I3,
to l;s must go through I7.

(2) Must Aliasing: The stored pointer n at /;; must alias the stored
pointer p at l1o and I, (p flows to n according to Is and [;4).
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From
Lo : Ly : L
To ql q2 q3
1| void foo(int »m) { L5 : x1 c2 -c2 NA
2 int «p, «n; .
3 if (c1) Lig:x2 false false c3
4 p = malloc(int); . C2A  ~c2A
5 else 121 X3 ~c3 ~c3 c3
6 p = malloc(intx);
Z (b) Final results for load-store match.
«m = p;
9| if(c2)
= . 04
10 P =aqb cond(g3 — x2) =cl1 Ac3
11 else
12 *p =q2; 04 _
13|/ ep - q0; cond(g2 — x2) =c1 A —c2 A c3A
14 n=+m; 04
15| intsx1 = «p; —cond(g3 — x2)
16| if(c3){ _
17 = q3; = false
18 int «x2 = +p; 04
] 3 e cond(ql — x2) =c1 Ac2 Ac3A
20 04
21| intsx3 = «p; —cond(g3 — x2)A
22 o4
231} —cond(g2 — x2)A

= false
(a) Code example.
(c) Deriving the conditions for g3, g2, and
q1 to flow into x2 via o4. They can also flow
into x2 via o4, with similar derivations.

Figure 1: Illustration of Path-sensitive data dependence anal-
ysis. [; denotes the statement at Line i and o; represents the
memory object allocated at J;.

Therefore, for resolving the indirect dependencies of x2, we could
early terminate the analysis after discovering the strong update at
li7, thereby avoiding the costly path-sensitive reasoning for match-
ing against the values stored in ;o or [;; as demonstrated in Fig. 1c.

Intuitive as the idea may seem, there are two major challenges
for implementing our approach:

(1) Inferring must-aliases in a path-sensitive setting is hard. While
control flow dominance could be decided efficiently, determin-
ing whether two pointers p and q are must-aliases in a path-
sensitive setting is hard because p and q may point to different
memory locations under different conditions. This is the in-
herent complexity of path-sensitive analysis that we intend to
avoid in the first place.

(2) Lengthy history of store operations need to be considered. Dur-
ing the load-store matching, a load statement could have mul-
tiple preceding store statements as candidates. Constructing
the must-kill relation among the candidates needs to check the
must-aliasing and control flow dominance relation for times
quadratic to the number of candidates, further threatening the
performance.

To tackle these challenges, we design an algorithm based on
syntactical equivalence checking to efficiently compute an approxi-
mation of the must-aliasing results. Further, we adopt a tree-like
data structure to maintain and incrementally update the must-kill
relation during the analysis to avoid the quadratic behavior.

In this paper, we propose TUNA, a technique that boosts the
performance of resolving indirect dependencies in path-sensitive
data dependence analysis by enabling efficient strong updates. Tuna
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ProgramP = F*
Func F = define f(vy,...,un) = {S}
StatementS = v:=e|v:=&a

| *0:=k|k:==x0

| assume(y)

| o:=ite(y,01,0)

| f(ay,---an)

|

S1; S, | nondet(Sy, Sy) | return v
Figure 2: A simple programming language.

limits the scope of the path-sensitive reasoning by identifying most
strong update opportunities based on a must-kill relation among
the heap store statements. We implemented TuNA and evaluated
it on 20 real world programs. Comparing with the state-of-the-
art approach Falcon [44], TuNa achieves a speedup ranging from
1.2x to 31.5x, reduces the peak memory usage to around 39.5%—
62.9%, and is able to finish on targets where Falcon fails due to
resource constraints. The enhancement in performance of TuNa
also transfers to improved state coverage in static analysis.
In summary, this paper makes the following contributions:

o We identify the efficiency problem of performing strong updates
in path-sensitive data dependence analysis for resolving indirect
dependencies.

o We infer a must-kill relation among the heap store statements
to efficiently enable strong updates by limiting the scope of the
path-sensitive analysis. We design algorithms and data struc-
tures to optimize the performance of both the must-kill relation
computation and the path-sensitive analysis.

o We implement the idea and demonstrate that our approach im-
proves over the state-of-the-art significantly in terms of run time,
peak memory and state coverage.

2 Preliminaries

In this section, we give some preliminary definitions and formally
state the problem of path-sensitive data dependence analysis. We
demonstrate our approach using the language in Fig. 2. We use Loc
to denote the set of program locations (I : S means a statement S
at the program location [) and y € Cond to denote conditions (or
guards). Most of the statements are standard. We represent memory
allocation (such as malloc) using the address-of operator (v:=&a).
We use the assume statement to model branch conditions and the
nondet statement to perform a non-deterministic choice.

The program is assumed to be in SSA-form [10] where def-use
relations among the top-level variables are made explicit. The state-
ment o := ite(y, vy, vz) indicates that v is assigned v; if y holds and
is assigned v, otherwise (mirroring the ¢-statement in SSA). In this
work, we inherit the same assumptions from previous works [33, 44]
that the program is loop free and no aliasing exists among the ac-
cessed heap locations from the function’s environment.

The goal of path-sensitive data dependence analysis is to con-
struct the sparse value flow graphs (SVFG), where nodes represent
values and edges denote how value flows:

Definition 2.1. A path-sensitive data dependence analysis com-
putes a set of SVFGs G = (Uferuncs G Einter LE), where each
function f has its own SVFG denoted by G¢(Np, Er). Each node
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n € Ny of Gy is either a program variable v (recall our use of SSA)
or a memory access path (xp); denoting the value contained in p
at the program location I. Each edge e = (v1,v;) € Ey is labelled
with a condition y = Lg(e) € Cond indicating that v; may flow to

vy under the condition, which we write as v; LR v,.

To facilitate inter-procedural analysis, interface variables [42]
are created for a function’s SVFG, including its parameters, return
value, and the memory access paths from its environment that
are either read or written inside the function. Then the value flow
across function boundaries are encoded in E;;e,, which contains
edges connecting a function’s interface variables to the matching
values at the function’s call site. For instance, suppose f calls g as
inl:g(ay,---a,) and par; denote the ith parameter of g, we model

regular parameter passing as a; (—l> pari € Eipter,ai € Ny, par; €
N,. Notice that edges from Ej ., are labelled with open (for calls)
or close parentheses (for returns) corresponding to the call site [,
modeling context-sensitivity with CFL reachability [31].

An inter-procedural value flow path 7 = v; — ... is feasible if

AV vi is satisfiable and the sequence of edges in 7 from
(v;—vj)en

Einter constitutes an inter-procedural realizable path [31].

The goal of path-sensitive data dependence analysis is to con-
struct SVFGs that resolve the indirect dependencies:

Definition 2.2. The SVFGs G soundly resolve the indirect de-
pendencies if for any concrete execution of the program in which
t = *u fetches the value of k stored before in *v := k, there exists a
feasible inter-procedural value flow pathz =k — --- > tin G.

We assume that the domain of conditions, Cond, and the decision
procedures for checking the satisfiability or validity of these condi-
tions are provided. In this work, we follow Falcon [44] to construct
the conditions based on a propositional abstraction of the program
and reuse the lightweight semi-decision procedures of Falcon. As
opposed to a full-fledged SMT solver, these procedures could decide
restricted class of condition formulas in quasi-linear time but may
also conservatively classify unsatisfiable conditions as satisfiable.

3 TuNA in a nutshell

In this section, we illustrate how TuNA boosts the performance of
resolving indirect dependencies for constructing the SVFGs defined
in 2.1. First, we discuss the design of existing works and highlight
why they encounter scalability challenges in performing strong
updates path-sensitively. Then we introduce our idea of staged
resolving of indirect dependencies based on the inference of the
must-kill relation for performing strong updates efficiently. Finally,
we demonstrate algorithmic optimizations for computing the must-
kill relation and performing the path-sensitive analysis.

3.1 The Scalability Challenge

Path-sensitive data dependence analysis such as Falcon qualifies

the analysis domain with path conditions, which are constructed,

propagated, and solved to prune infeasible value flows. As shown

in Fig. 3, in order to resolve the indirect dependencies of x2 at I35

of Fig. 1a, Falcon computes:

e A points-to map Pts: p and n point to o4 and o under the condi-
tion c1 and —c1 respectively (Fig. 3b).
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0, ip=1(q1,c1Ac2)

bo 0¢ i3 =(q1,c1AC2)

0, i =(92,c1A=c2)
0¢ i3 =(92,c1A—=cC2)

04 ql,c1Ac2Ac3)
q2,c1 A= c2A c3)

(
(
(a3,c1Ac3)

(g1, 7c1 Ac2Ac3) D
(

(

g2, =c1A=c2A c3)
g3, =c1 Ac3) )

i’
iy
% iy
ill
i3’
is

(a) For location [; and
memory object o, the list
of reachable store items
(val, cond) is maintained.

(tem | ____ M| ___B:i___|Mi\Bsatisfiable?

(b) Points-to map and the con-
structed SVFG. Edges are labelled
with their guarding conditions.

is My= —clA c3 By = true Yes
iz’ My= —clA-c2A c3 By =-M, No
iy’ My=-c1 Ac2Ac3 By=-MyA-M; No

(c) The process of load-store matching by traversing the store
item list associated with /;; and o5 backwards.

Figure 3: The internals of the existing method on Fig. 1a. We
highlight the step for handling the load statement at ;3.

o Anabstract heap H (Fig. 3a): Given a program point and a memory
object, an ordered list of reachable “store items” is computed. For
instance, ip = (g1, c1 A ¢2) in the list associated with [;y and o4
indicates that o4 is stored the value q1 under c1 A c2. Notice that
ip—i3 originate from the store statements at [;, and /15, but “reach”
(i.e., the stored values may be loaded back at) l;7, leading to the
items ij~i; (the guarding condition c3 for I;7 is conjoined).

To resolve indirect dependencies at a particular load statement,
the points-to objects of the loaded pointer will be iterated, and
for each pointed object, the reachable value items are queried to
compute the value flow conditions. Notably, the possible interfer-
ence among the store statements are explicitly encoded as blocking
conditions in order to support strong updates.

Example 3.1. For lig : x2 = *p in Fig. 1a, the analysis iterates
over each memory object o; that p points to (i.e., 04 and 0 according
to Pts), and visits the store list associated with l;; and o; backwards.

For instance, {is, i, i{ } is visited in order for the points to target
06 (Fig. 3¢). The first item is = (g3, —c1 A ¢3) is matched under
its contained condition My = —c1 A c3, indicating that q3 may
flow into x2 through the memory object 06 if M, holds. Then i]
is matched while blocking i5 (matching condition M; and block-
ing condition B; = —M,), ] is matched while blocking is and i;
(matching condition M, and blocking condition B, = =My A =M;).

Due to the blocking conditions, it is inferred that x2 can match
with is but cannot match with i (M; A By = false)orij (My AB, =
false). A similar process is carried out for the other points-to
target o4 and infers that i4 is the only matched value item. Thus,
the analysis deduces g3 to be the only incoming value for x2, as
shown by the SVFG constructed in Fig. 3b.

Yiyuan Guo and Charles Zhang

Scalability Challenge. Relying on the path-sensitive reasoning
for performing strong updates can be expensive because of the
large number of store candidates to consider and the explosive
accumulation of blocking conditions. For instance, the blocking
condition formulated when matching with the first store item in
the list such as i] involves all the other items is and i;, which could
quickly become intractable.

Practical Considerations. Due to the inherent complexity of the
path-sensitive analysis, a static analyzer often enforces limitations
on its state space exploration, e.g., a path-sensitive data dependence
analysis could limit the number of points-to targets that are tracked
path-sensitively [44]. Our work shares the same theoretical limit
of path-sensitive analysis but aims to significantly improve the
performance over the existing method such that a larger state space
could be explored more efficiently.

3.2 Identify Strong Updates Opportunities

As introduced in §1, our key improvement lies in a staged design
for resolving indirect dependencies in path-sensitive data depen-
dence analysis: strong updates are mostly enabled by exploiting
the control flow and must-alias information, limiting the scope
of the expensive path-sensitive analysis for better efficiency. To
achieve this, we compute a must-kill relation among the heap store
statements:

Definition 3.1. Given a load statement [, : ¢ = *u and a pair of
store statements [y : *xv; = sq, [, : *vy = sy, the store at [; must kill
the store at I w.r.t [y (denoted by mustKill(ly, I, ly)) if:

(1) Any execution path from I, to Iy must go through I;.

(2) The stored pointers v; and v, are must-aliases.

The graphical illustration of the definition and the application of it
to I;5 of Fig. 1a are shown in Fig. 4a and Fig. 4b.

A direct consequence of Definition 3.1 is given by the following
theorem:

THEOREM 3.2. IfmustKill(l3, 15, 1y) as per Definition 3.1, then t is
not dependent on s, in any concrete execution of the program.

From Theorem 3.2, we are able to achieve a straightforward
optimization over the existing approach: If mustKill(L, I, lp), we
can safely skip I; when resolving the indirect dependencies of Iy
because the effect of I, is guaranteed to be invalidated by /5. In
other words, we have identified the opportunity to perform a strong
update at I; w.r.t I

Example 3.3. Fig. 4c illustrates how the must-kill relation in
Fig. 4b can help to enable efficient strong updates. Because of the
must-kill relations mustKill(ly7, Lo, l1s) and mustKill(l17, 112, Lis),
l17 is discovered to be the only incoming indirect dependency for
I;5, allowing the analysis to skip matching between l5 and I3, or
between I;3 and ;. Meanwhile, we focus the path-sensitive reason-
ing to places where the killing relation is conditional, e.g., matching
Iy with I35 or ljp needs to add the blocking condition for /7.

3.3 Algorithmic Optimizations

Computing Must Aliases. According to Definition 3.1, a key chal-
lenge in computing the must-kill relation lies in the identification
of must-aliases. Higher precision in inferring must-aliasing could
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b7 : *= q3;

l1g @ int*x2 ="*p;

reaches

lyrt=%u

(b) The must-kill relation
mustKill(ln,llo, 113) and
mustKill(l17, 112, l1s) identi-
fied for Fig. 1a.

(a) Graphical illustration of
Definition 3.1

s int*x1=*p; ——— @) Lo : *P=01; —————

9112: *p=q2;

l1g * int*x2 ="*p;

o 80
Ly int*x3=*p; —— @ I, : *n=q3;
I

(c) Utilize the must-kill relation to perform strong
updates. Edges connect loads to matched stores
and are labeled with stores that should be blocked.

Figure 4: Efficient strong updates through inferring must kill
relation among the heap store statements.

lead to the discovery of more must-alias pairs, which in turn causes
the condition in Definition 3.1 to be satisfied more often, allowing
more strong updates to be performed efficiently.

Specifically, we pursue path-sensitivity in must-aliasing infer-
ence for better precision. Two pointers p1 and p2 can be determined
to be must-aliases if they always point to the same target under
the logically equivalent condition. For instance, according to Fig. 3
(a), the pointer analysis result suggests that both p and n point
to 04 under c1 and o under —c1. They can be determined to be
must-aliases because (c1 A c1) V (=c1 A =c1) = true. However,
inferring must-aliasing by computing the exact points-to condi-
tion and checking for logical equivalence suffers from the inherent
complexity of path-sensitive analysis (e.g., there may exist a large
number of points-to targets and complex points-to conditions),
which we aim to avoid in the first place.

Our idea is to approximate the computation of must-aliases based
on the following observation: If p and q always point to the same
target under the syntactically equivalent condition, they are must-
aliases (notice that the converse is not true). Our approximate
procedure can determine p and n in Fig. 3b to be must-aliases,
but may fail in other cases. Moreover, the syntactic equivalence
checking could be efficiently implemented by computing a hash
value for each node in the points-to map, which we will detail in §4.
Incrementally Update The Must-Kill Relation. As introduced
in §1, computing the must-kill relation in Definition 3.1 leads to
quadratic behaviors because all pairs of interfering store statements
need to be enumerated for computing must-aliasing and control
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Ty Must kill relation
irp=az T, q0

bis
\ / Lig T,0—0 T; g3
b : "p=d0; P9 0 O T q0,q3
4
| Edge exists for I g
| butnotly, Anchor
xX2@lyg ) X1@[;5
T, Update
L7 *n=q3; $B@ Ly T2

Figure 5: The kill forests and matched incoming values for
lis, l1s, and I; in Fig. 1a (with ;3 uncommented).

flow dominance. We propose to optimize the computation by ex-
ploiting the fact that the must-kill relation is transitive. Indeed, for
a given load statement, the must-kill relation can be represented
as a must-kill forest (i.e., a set of trees), which we incrementally
update.

Specifically, to construct the must-kill relation for a load at [;,
we trace back to its “anchor point” I; (a preceding load statement)
and fetch the must-kill forest ¥ previously constructed at [;. F is
then incrementally updated to denote the must-kill relation at [; by
considering the store statements that are present between /; and I;.
We defer the formal definition of “anchor point” to §4.

Example 3.4. The kill forest constructed for Fig. 1a (with Line 13
uncommented) is shown in Fig. 5. After processing the load at [;5,
we construct tree T; to encode that l;3 must kill /;¢ and l;,. When
computing the must-kill relation at l;5 or l51, the analysis first traces
back to the “anchor point” I;5 of both statements and incrementally
updates Ty by T. T; consists of the only store statement /;7 lying
between l;5 and lj5 (or I3;), allowing us to avoid processing the
entire history of memory stores.

Because mustKill(ly7, 13, l1s) holds but mustKill(ly7, I3, o) does
not hold, only the must-kill forest constructed for /;5 has an edge
that connects the root of T, to the root of T7. As a result, the analysis
concludes that x2 only takes the incoming value from g3, while x3
either takes the value of q3 or q0@ (with extra condition —c3 that
blocks the effect of I17).

Optimized Path-sensitive Reasoning. When the must-kill rela-
tion is absent, we fall back to using blocking conditions for enabling
strong updates. Existing method computes the condition for load-
store matching by exhaustively iterating over the possible points-to
targets, e.g., the store item list at /;; of Fig. 3 splits over o4 and os,
which could be expensive for large points-to set.

We optimize this process by directly computing the “matching
condition” between a load and a store statement regardless of the
passed through memory objects (detailed in §4).

4 Analysis algorithm

In this section, we detail the algorithm of Tuna for SVFG construc-
tion. We first demonstrate how TUNA constructs and incrementally
updates the must-kill relation among the store statements using
a forest data structure. We then show how the kill forest boosts
the performance of performing strong updates in resolving indirect
dependencies. Finally, we elaborate on the computation of both
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Locations 1 € Loc
Objects obj eVy
Variables vEeEVPUVIUV,y

Guard y € Cond
stOp € Stores
1dOp € Loads
SVFG G

Figure 6: Analysis domain of TuNa. Vp, V; and V4 denote
variables. C, represents an atomic boolean guard.

u=true | false | Cp | Yo A1 | —¢
u= (ll,Pl,Ul) € LocxV XV

n= (lz,pz,Uz) € LocxV XV

=V — 20V

[Alloc]
(G, ¢) Fo:=&a: (Glog - (Y,0)], )
=y Ay,
Yo=Y Ay [Ite]
(G, ¢) ro=ite(y,v,02) : (Glor > (Y1,0), 02 - (Y2,0)], )
stop = (L, 0,k) (Store]

Stores + (l: v =k) : Stores U {stOp}

1dop = (I, v,k), Loads’ = Loads U {1dOp}
G’ =Gloal = ( A, k)] (val.g)ematch(1dop)  [Load]
(G, ¢, Loads) + (I : k = xv) : (G, ¢, Loads")

Figure 7: Inference rules of Tuna for path-sensitive data
dependence analysis.

must-aliases and may-alias condition path-sensitively, which are
crucial to the analysis performance.

4.1 Efficient Strong Updates Via Kill Relation

The core of our analysis domain (c.f. Fig. 6) is the SVFG G: Each
node corresponds to either a program variable (Vp), an interface

variable (V7), or a memory allocation site (V4), and each edge v, LN
v, indicates a value flow from v; to v, under the condition y (c.f.
Definition 2.1). For each store operation /5 : p; = v in the program,
we record it as stOp = (ly, p1,v1) € Stores. Similarly, each load
operation I, : v, = *p; is recorded as 1dOp = (I, p2,v2) € Loads.
By processing the program statements following the topological
order of the control flow graph (CFG) and applying the inference
rules in Fig. 7, TuNA gradually constructs the SVFGs during the
path-sensitive data dependence analysis. Specifically, Rule Alloc

adds an edge o, i) v to G from the allocation site to the variable,

Rule Ite adds the edges v, ﬂ v and v, l//z—> v where the conditions
Y1 and ¥, update the precondition ¢ with y, and Rule Store simply
adds the new store operation stOp to Stores.

Rule Load performs load-store matching to resolve the indirect
dependencies and is central to the analysis. By invoking match(l; :
k = v), the possible incoming values for k (val) and their associated

conditions (¢) are obtained, leading to the new value flow edges
PAY

val — k (Note that the precondition ¢ is also conjoined).

The implementation of match as shown in Algorithm 1 consists
of two stages: the construction of must-kill forest (Lines 2-7) and
the computation of matching stores (Lines 8-15).

Must-Kill Forest Construction. As discussed in §3, TuNA utilizes
the must-kill relation to spot opportunities for performing strong
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Algorithm 1: Load Store Matching In Tuna
Input: Load operation 1dOp corresponding to ; : k = *v
Global: Map M that associates program location with the
must kill forest
Output: A set of value-condition pairs (val, ¢) that may
flow into k
1 Procedure match(l; : k = *0)
2 ly < getimmAnchorOrEntry(l;,v);
3 Fy « M.at(ly);
4 S « getReachableStore(ly, [;);
5 Fs < constructKillForest(S, ;);
6 F, « merge(Fs, Fo, );
7 M.set(ll,Fl);
8 TreeRoots < getTreeRoots(F;);

9 Sort TreeRoots using reverse topological CFG order;
10 cp < true, Res « 0;

1 for Node N in TreeRoots do

12 (I : *vx = val) < Nj;

13 cm — getMatchCond(l; : k = *v, I : vy =val);
14 Res <« Res U {(val,cy A cp)};

15 Cp < Cp N Cpy 5

16 return Res;

17 Procedure constructKillForest (S, [;)
18 Fs «—0;
19 for (I, vs,valy) € S, (I3,v3,val3) €S, 1, # I3 do

20 N1 « addNode(Fs, l);

21 N, < addNode(Fs, I3);

22 if mustKill(l,, 13, 1) then
23 | addEdge(Fs,N; — Ny);
24 return Fg;

25 Procedure merge (Fs, Fy, [;)
26 Fi «— FsUFy;
27 for Ny = (I, : v, = _) in getTreeLeaves(Fs) do

28 for N, = (I3 : *v3 = _) in getTreeRoots(F,) do
29 if mustKill(l,, 15, 1;) then

30 | addEdge(F;, N; — Ny);

31 return Fj;

32 Procedure getMatchCond(l; : k = *v, I : *xv, = val)

33 ‘ return y(Iy, ;) A aliasCond(v, vy);

34 Procedure getReachableStore (I, [; : k = *v)

35 S — {(Iy,vx,val) | Ly : xvy = val, reachable(ly, Ly, ),
36 aliasCond(v, v, ) # false};

updates efficiently. We encode the must-kill relation in a forest data
structure that is incrementally updated. Given a load operation at
I;, we seek to find its “immediate anchor point” [y such that the
kill forest Fy at Iy equal the kill forest F; at [; as long as no store
statements are present between [y and I;:

Definition 4.1. The load [y : kg = *vy is an anchor point of the load
Iy : k ==vif (1) ly # l;, Iy dominates [; (2) vy and v are must-aliases.
Iy is an immediate anchor point of [; if for any anchor point I3 of [;
where I3 # Iy, I3 is also an anchor point of .
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Based on this intuition, Lines 2-6 of Algorithm 1 construct the
kill forest F; at the given load statement [; by updating the forest
Fy at Iy, the immediate anchor point of /; (in case the immediate
anchor point does not exist, I will be the function entry and F, will
be the empty forest).

The update from F, to F; is conducted by considering the set
S of new store operations that could interfere with the load at 4
(Line 4 and Lines 35-36): Each operation I, : *v, = val in S should
lie in a control flow path from Iy to I; (reachable(ly, Iy, 1)), and
the stored pointer v, may alias v at /; (aliasCond(v,v,) # false,
which we detail in §4.2). The relation among the store operations in
S is computed and encoded in the forest Fs (Line 5), which further
merges with Fy to produce the final forest F; at [; (Lines 6-7).

Example 4.1. For the example in Fig. 5, consider applying Algo-
rithm 1 to I;5 : X2 = *p. First, according to Definition 4.1, Line 2 of
Algorithm 1 will return /5 as the immediate anchor point of /5. The
kill forest associated with ;5 is Ty in Fig. 5 (obtained by Line 3 of
Algorithm 1), getReachableStore(lys, ls) returns S = {(l17,n,93)},
and constructKillForest(S, l;g) gives rise to T, in Fig. 5. Merging
T,, Ty will add an edge that connects them (i.e., the dotted edges
shown in Fig. 5), leading to the final must-kill forest at ;3.

The steps to construct a kill forest from a set of store operations

and the steps to incrementally update a kill forest by merging are
shown in Lines 17-24 and Lines 25-31 of Algorithm 1 respectively.
We mitigate the quadratic performance issue in constructing the
must-kill relation by only enumerating pairs of store operations
within the reachable store set S (Line 21), as opposed to the entire
history of store statements. Moreover, merging Fs with Fy can be
achieved efficiently by examining the must-kill relation between
leaf nodes of Fs and root nodes of Fy and adding edges when such
relation exists (Lines 27-30).
Perform Load-Store Matching. With the kill forest F; constructed,
strong updates are enabled readily: Only the store operations at
the root nodes of F; may provide the incoming value for k, while
other nodes are killed by the roots of their containing trees (c.f.
Theorem 3.2). Therefore, we have successfully reduced the scope of
path-sensitive reasoning from all possible store operations to only
the root nodes of F;.

Lines 11-15 of Algorithm 1 iterate over each root node N (asso-
ciated with a store I : *v, = val) in reverse topological order of
the control flow graph to perform load-store matching. The value
flow condition for val to reach k consists of two parts. First, as
shown by Lines 13, 32-33 of Algorithm 2, a matching condition cp,
is computed to enforce that the control flow can transfer from I to
I; (denoted by the condition y (I, I;)) and the stored pointer should
alias the loaded pointer (denoted by the condition aliasCond (v, vy)).
Second, a blocking condition c; is conjoined to block the effects of
other root nodes visited before N by taking the negation of their
matching conditions (Line 15).

Example 4.2. For the example in Fig. 5, consider applying Algo-
rithm 1 to lp; : x3 = *p. The immediate anchor point found for I5;
is still /15 but the final kill forest constructed for l5; consists of two
separate trees {11, T, } (c.f. Fig. 5, note that the dotted edge is not
present for the forest of I5;). Lines 11-15 of Algorithm 1 visit the
root node of T, (I17 : *n=g3) and the root node of Ty (I15 : *p=q0) in

ICSE *26, April 12-18, 2026, Rio de Janeiro, Brazil

Algorithm 2: Computation of Path-sensitive Alias Infor-
mation

1 Procedure getPts(G, v)

2 if v € V4 then

3 ‘ return {(o, true)};

4 Pts « 0;

5 forsrciv inG do

6 SrcPts « getPts(G, src);

7 UpdPts — {(o,y A P) | (0,1) € SrcPts};

8 Pts « (Pts \ UpdPts) U (UpdPts \ Pts) U {(o, ¥ V
¥a) | (0,91) € Pts, (0,Y2) € UpdPts};

9 return Pts

10 Procedure getHash(G, v)

1 if v € V4 then

12 ‘ return hash({(v, true)});
13 Vals « [hash(v)];

14 for src i v inGdo

15 H; < hash(¢);

16 H, « getHash(G, src);
17 Vals « Vals + [Hy, Hy];
18 return hashCombine(Vals);

19 Procedure isMustAlias(G, p, q)

20 ‘ return getHash(G, p) == getHash(G, g);

21 Procedure aliasCond (vy, v2)

22 S1 « getPts(v;);

23 Sy « getPts(vy);

24 | return V{¢: A ¢z | (0,1) € S1,(0,¥2) € S2};

order and add the new value flow edges g3 <, x3 and q@ 9, x3
(T3 is blocked when matching the root of T;).

4.2 Optimize Path-sensitive Alias Reasoning

Algorithm 1 presented in §4.1 necessitates the computation of both
must-aliasing and may-aliasing:

(1) Must-alias information is required in determining the must-kill
relation (Definition 3.1) and finding the anchor point of a load
operation (Definition 4.1).

(2) May-alias information is required in finding the store candidates
for a given load operation (Line 4 of Algorithm 1) and computing
the matching condition between a load and a store (Line 33 of
Algorithm 1).

To determine whether two pointers may or must point to the
same memory location, a path-sensitive analysis normally tracks
the related information in the guarded points-to sets. For a given
variable v and its guarded points to set Pts, (0,¥) € Pts indicates
that v points to o under the condition /. Our goal is to compute both
must-alias and may-alias information in a precise, path-sensitive
manner, while mitigating the performance issues normally seen in
a path-sensitive analysis.

Must Alias Inference Based On Syntactical Equivalence. By
definition, p and q are must-aliases if they always point to the
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same target under the logically equivalent condition, which can be
verified by computing and comparing their guarded points-to sets.

However, this straightforward method induces high overhead
because it is expensive to compute the guarded points-to set due
to the inherent complexity of a path-sensitive analysis. As shown
by the procedure getPts of Algorithm 2, to compute Pts for v, we
stop at the base case when v is an allocation site (Lines 2-3) and

recursively apply the procedure to each incoming edge src ﬂ vinG.
Pts is updated by conjoining the condition ¢ to the guarded points-
to set SrcPts of src (Line 7) and merging with the existing result
(Line 8). As G gets larger, both the size of Pts and the condition
formula may become explosive, making it challenging to infer must-
aliases.

Our approach addresses this challenge by performing an approx-
imate must-alias analysis: p and q are must-aliases if they always
point to the same target under the syntactically equivalent condi-
tion. Moreover, we boost the checking of syntactical equivalence
by computing a hash value for each node in G based on a Merkle
hash scheme.

As shown by the procedure getHash in Algorithm 2, the hash

value of a node v is aggregated from the hash of the current node
(Line 13), the hash of the condition ¢ labeling the incoming edge
of v (Line 15), and the hash recursively computed for the incom-
ing node src of v (Line 16). Notice how the structure of getHash
mirrors that of getPts, but instead of keeping the points-to targets
separate, the hash value compactly aggregates the points-to struc-
ture information. Checking for must-aliasing is then easily done
by comparing the hash values (Lines 19-20).
Directly Computing The May-Alias Condition. When the must-
kill relation does not contribute to enabling strong updates, TuNA
falls back to using blocking conditions to support path-sensitive
strong updates (Lines 11-15 of Algorithm 1). We aim to further
improve the performance of load-store matching in this stage.

In TuNaA, we directly compute the set of candidate store state-
ments for a given load (Line 4 of Algorithm 1) and the aliasing
condition required for the specific load-store match (Line 33 of
Algorithm 1). The computation of the aliasing condition is done
by aggregating the conditions from the guarded points-to sets of
both variables, as shown in Lines 21-24 of Algorithm 2. By directly
computing the may-alias condition, we avoid the repetitive store
list traversal for different points-to targets in the existing work
(c.f. §3.1).

5 Evaluation

We implement TuNA based on LLVM [22]. Following existing liter-
ature on path-sensitive data dependence analysis [3, 14, 33, 34, 39],
TuNA replaces each loop in the control flow graph and call graph
of the program with a finite unrolling of its body.

Our evaluation aims to answer the following research questions:

e RQ1: How much can TuNA boost the performance of indirect
dependencies resolving in path-sensitive data dependence analy-
sis? Does the improved performance of Tuna lead to increased
state coverage in static analysis?

o RQ2: How often are strong updates enabled in TuNA by utilizing
the must-kill relation?

e RQ3: How do the design choices of Tuna affect its performance?
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ID Program Size (KLOC) #Funcs #Loads #Stores
0 x264 96 0.8K 28.2K 10.1K
1 omnetpp 134 15.7K 66.9K 21.8K
2 povray 170 2.1K 57.6K 14.2K
3 cactusBSSN 257 3.6K 325.6K 98.5K
4 perlbench 362 5.3K 178.5K  58.5K
5 cam4 407 5.1K 390.9K 174.5K
6 parest 427 66.2K 302.3K 116.3K
7 xalancbmk 520 38.8K 139.7K 49.5K
8 gee 1304 26.9K 434.5K 108.9K
9 blender 1577 56.8K 538.4K 168.3K
10 libz 41 0.1K 3.2K 1.8K
11 librdkafka 167 2.6K 74.2K 43.1K
12 libtorrent 213 86.2K 83.1K 62K
13 curl 297 6.8K 35.1K 15.7K
14 redis 325 5.7K 75.2K 43.9K
15 bitcoin 716 16.9K 108.1K 85.2K
16 php 1012 18.2K 310K 130.8K
17 ffmpeg 1346 232K 5841K  316.5K
18 qemu 1809 24.4K 160.6K 75.5K
19 mysql 2030 100.5K  719.1K 458.5K

Table 1: Subjects for evaluation. Subjects 0-9 are from the
SPEC CPU@2017 benchmark, while Subjects 10-19 are well-
known open-source software at their latest versions.

Baseline. We compare TuNA with Falcon [44], the state-of-the-
art in path-sensitive data dependence analysis. We obtain the source
code of Falcon from its authors and modify it so that we could tune
its limitation parameters (detailed later).

Subjects. As shown in Table 1, we perform an evaluation on 10
programs (ID 0-9) from the standard benchmark SPEC CPU@2017
as well as 10 open-source projects (ID 10-19). These subjects are
widely used in the evaluation of previous works, cover diverse ap-
plication domains, and pose significant challenges to static analysis
due to their large size (up to several million lines of code).

We also list the number of functions and the number of load /
store instructions in the LLVM bitcode representation in Table 1.
For instance, to handle mysql, over 100K SVFGs will need to be
constructed (one for each function) and the load-store matching
process needs to be performed over 719K times (for every load
instruction), posing significant challenges to the static analyzer.

Environment. All the experiments were performed on a com-
puter with dual 20-core processors Intel(R) Xeon(R) CPU E5-2698
v4@2.20GHz and 500GB physical memory, running Ubuntu-20.04.
In the experiments, each static analyzer is run under a single-
threaded mode, where the computation resource is limited to four
hours of time and 300GB of memory.

Configurations. As discussed in §3.1, in practice, path-sensitive
data dependence analysis often sacrifices soundness by limiting
its state space exploration. In our experiments, we evaluate the
performance of Falcon and TuNA under the same default parameters.
Also, we examine whether TUNA can contribute to relaxing the
limiting parameters such that the static analyzer could explore
a larger state space. Specifically, we will tune the following two
parameters:

e --pts-limit: The maximum number of points-to targets that
are tracked path-sensitively.
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e --vals-limit: The maximum number of incoming values that
could propagate to a load statement.

For all experiments, we set up both Falcon and TuNA to unroll
each loop in the program’s control flow graphs once and to directly
break the back edges in the call graphs. We discuss the effects of
varying the loop unrolling factor in §5.3.1.

5.1 Effectiveness of Tuna

To demonstrate how TuNa improves the performance over Falcon,
we run them on the selected subjects for the task of SVFG construc-
tion. Both of them perform path-sensitive data dependence analysis
for resolving indirect dependencies, but differ in how strong updates
are enabled.

Fig. 8 demonstrates both the elapsed time and peak memory of
Falcon and TuNA under the default configuration (--pts-limit
is set to 128 and --vals-1limit is set to 1000). On average, TUNA
achieves a 8.0x speed up over Falcon, consumes only 43.3% of mem-
ory, and successfully analyzes four subjects where Falcon fails due
to out of memory (OOM) issues.

We further run Falcon and TuNA under a set of nine (ID 0-38)
configurations (X, Y) that are increasingly relaxed, where X and Y
denote the value for --pts-limit and --vals-limit respectively.
We set the values of (X, Y) by doubling or halving the default
values (128,1000) (the default configuration is given the ID 4),
leading to the more relaxing configurations (ID 5-8) and the more
restrictive configurations (ID 0-3). Thus, each tool performs 180
analysis runs for the 20 subjects in total.

The result is shown in Fig. 9. Compared with Falcon, TuNna
achieves a speedup ranging from 1.2x to 31.5x, while the peak mem-
ory usage is around 39.5%-62.9%. As the figure shows, the improve-
ment of TuNA becomes increasingly significant as the configuration
becomes more relaxed. In summary, Falcon fails to complete 38
analysis runs due to timeouts or out-of-memory (OOM) errors,
while TuNA fails in only four runs, all of which are also among the
runs where Falcon fails.

The capability of TUNA to run path-sensitive data dependence
analysis in a more relaxed configuration leads to its better state
coverage. Table 2 demonstrates how the size of the constructed
SVFGs increases as the configuration is relaxed (we measure the
total count of nodes and edges in the SVFG as a proxy for its size).
In summary, relaxing the configuration leads to 2.2x more nodes
and edges in the SVFGs on average (maximum increase is 13.6x),
thus capturing more value flows in the program.

Answer to RQ1: TuNa significantly improves the performance
over Falcon in both run time and memory usage, and enables the
path-sensitive data dependence analysis to explore a larger state
space more efficiently.

The improvements of TuNa lies in its ability to perform strong
updates early by utilizing the must-kill relation to avoid the costly
path-sensitive analysis. We further study how often such strong
updates can be enabled. For this purpose, we measure the number
of tree root nodes Nj traversed in Lines 11-15 of Algorithm 1
versus the total number of store operation candidates N (i.e., the
total number of nodes contained in F; at Line 6 of Algorithm 1).
Our approach reduces the scope of path-sensitive reasoning from
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ID Maxnum Deltanum | ID Max num Delta num

0 1213.2K 11.8K 10 15511.5K 14375.0K
1 5700.3K 1972.3K 11 11429.1K 3720.1K
2 3561.1K 62.2K 12 4994.1K 1394

3 18838.6K 784.8K 13 3587.8K 810.2K
4 68578.4K 54557.6K 14 33784.6K 16640.7K
5 14039.0K 139.4K 15 53378.6K 16596.4K
6 13466.2K 657.7K 16 77480.1K 53135.8K
7 8411.1K 346.8K 17 227345.8K  163744.3K
8 48064.1K 8799.3K 18 23637.3K 442.4K
9 24512.1K 943.5K 19 132747.2K 29657.5K

Table 2: Statistics variation for the SVFGs constructed under
the nine different configurations. For the 20 programs (IDs 0
to 19), the column labeled "Max num" represents the maxi-
mum value of the total count of nodes and edges in the SVFGs
across all configurations, calculated as max(Z(|N|+ |E])). Sim-
ilarly, the column labeled "Delta num" represents the dif-
ference between the maximum and minimum total counts
of nodes and edges in the SVFGs across all configurations,
calculated as max(Z(|N| + |E|)) — min(Z(|N| + |E|)).

N, nodes to N; nodes, and hence the smaller the ratio f—,l the

more strong updates are enabled efficiently based on the must-kill
relation.

As shown by Fig. 9, averaged across the nine configurations,
TuNA only needs to traverse 27.8% of the store candidates in Lines
11-15 of Algorithm 1, indicating that most of the strong updates
are efficiently enabled by the must-kill relation in our approach.

Answer to RQ2: Most of the strong updates opportunities are
enabled by the must-kill relation in TuNa, reducing the path-
sensitive reasoning to only 27.8% of the store candidates on aver-
age.

5.2 Design choices of Tuna

In this section, we study the contribution of the key designs of TuNa:
must-aliasing computation and incremental kill forest construction.

5.2.1 Must Aliasing Computation. We compute must-aliases based
on syntactical equivalence checking of the points-to structure. We
compare this choice with the standard approach, i.e., determining
must-aliasing by checking the logical equivalence of the guarded
points-to sets, which we use the variant TuNA_1 to denote. Across
the nine configurations, We found that Tuna_1 is 1.3 to 33.3 times
slower (average slowdown is 9.3x) and consumes 1.7 to 6.2 times
(average increase is 3.1x) of peak memory compared with TuNaA.

5.2.2  Incremental Kill Forest Construction. For a given load op-
eration, we construct the must-kill forest incrementally from the
existing forest of its immediate anchor point. We compare with the
naive approach where each time the kill forest is constructed from
scratch accounting for all reachable store operations, which we use
the variant TUNA_2 to denote. We found that Tuna_2is 1.1 to 2.5
times slower (average slowdown is 1.6x) compared with TuNa (the
memory consumption is similar).

Answer to RQ3: Both the designs in must-alias computation and
incremental kill forest construction are critical to the performance
of TuNA.
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Figure 8: Run time and memory comparison between Falcon and Tuna under the default configuration.
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Figure 9: Illustration of the improvements of TuNna over Fal-
con across a set of nine configurations. We set —pts-limit
to [8,16,32,64,128,256,512,1024,2048] and -vals-limit to
[62, 125, 250, 500, 1000, 2000, 4000, 8000, 16000] for Config ID 0-
8 respectively. The top plot shows the speed up, the middle
plot shows the percentage of peak memory usage, and the
bottom plot shows proportion of store operation candidates
left for path-sensitive reasoning. The data is averaged across
the 20 program subjects.

5.3 Discussion

5.3.1 The Effects for Loop Unrolling. In the original paper [44],
Falcon also directly breaks the back edges in the call graphs, ? but it
sets the loop unroll count to 2. Additionally, the values for other lim-
itation parameters are set to a relatively low number (--pts-1limit
is set to 3 and --vals-limit is set to 10 3).

We have attempted to rerun all our experiments under the loop
unroll count 2 for both Falcon and TunaA. Out of the 180 analysis
runs (recall that we have tested nine configurations for each of the
20 subjects), Falcon fails to complete on 111 (61.7%) runs due to

2This was confirmed with the authors of Falcon.
3We discover such numbers from the implementation code.

Performance Comparison: Tuna vs. Falcon under loop unroll count = 2
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Figure 10: Performance comparison between TuNa and Fal-
con over the nine configurations when the loop unroll count
is set to 2. The configurations are the same as Fig. 9.

either timeout or OOM, while TuNA fails to complete on 58 (32.2%)
runs. TuNA still achieves a speedup ranging from 9.2x to 26.0x,
while the peak memory usage is around 46.7%-70.0% (c.f. Fig. 10).
Increasing the loop unroll count hinders path-sensitive data
dependence analysis by heightening code complexity, which we
identify as an orthogonal problem for future investigation.

5.3.2  Can Falcon Benefit from Syntactical Equivalence Checking?
Although TuNA uses syntactical equivalence checking, this ap-
proach is unsuitable for improving Falcon’s performance:

e Unlike our method, Falcon does not infer must-aliases (it com-
putes conditional points-to results through satisfiability checking,
c.f. Fig. 3). Thus, the syntactical equivalence checking as in Tuna
could not be directly applied.

o We tested an alternative to Falcon’s standard satisfiability check-
ing by using a simpler syntactical equivalence check. This method
treats any condition as satisfiable unless it is syntactically equiv-
alent to “false” However, this approach was counterproductive,
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slowing performance by an average of 2.5x because it conser-
vatively approved too many conditions, leading to a significant
increase in the number of paths needing analysis.

5.3.3  Effects of Relaxing the Limitation Parameters. In §5.1, we
demonstrated that Tuna efficiently performs path-sensitive data
dependence analysis in a more relaxed configuration, resulting in
value flow graphs that are more “complete” (c.f. Table 2). How-
ever, It is important to note that discovering more value flows
does not automatically lead to detecting more bugs. Designing an
effective bug detector from a value flow graph is a separate and
complex challenge, as practical detectors often rely on trade-offs
like under-approximate algorithms [18] and require sophisticated
search strategies [21] to be effective.

6 Related Work

Data dependence analysis. Data dependence analysis [15] (also
termed value flow analysis [9, 33, 38]) is a powerful technique that
tracks value propagation in the program by sparsely following the
def-use relations and skipping the irrelevant statements. Due to the
efficiency benefits, data dependence analysis is widely adopted for
statically finding bugs in large and realistic software [26, 33, 39, 43].

Reasoning about pointers and resolving indirect memory depen-
dencies is a major bottleneck in data dependence analysis. Most
existing works adopt a layered approach: A global, conservative
points-to analysis approximates the def-use information and the
subsequent analysis attempts to recover the precision (such as
path-sensitivity) [6, 9, 26, 36, 39, 41, 43]. However, they suffer
from the spurious value flow propagation induced by the imprecise
pre-analysis [33]. Falcon [44] breaks the layered design by fusing
path-sensitivity in a modular analysis: An intra-procedurally path-
sensitive pointer analysis resolves local dependencies and function
side-effects, where the discovery of inter-procedural path condi-
tions is piggybacked on the client (e.g., the specific bug detection
task). In this work, Tuna further improves over the state-of-the-
art [44] by tackling the problem of inefficient path-sensitive strong
updates during the resolving of indirect dependencies.

Path-sensitive static analysis. Path-sensitive static analysis [6,
11, 14, 24, 26, 42, 44] comes in many flavours depending on (1) What
analysis facts are tracked in separation (e.g., the path-sensitivity
could be added during pointer analysis [44] or only be added at the
later stage of bug detection [24]) and (2) What is the strategy to
determine the separation (e.g., the descriptor of “paths” could be
full-fledged first order logic constraints [42] or conditions collected
from a propositional abstraction of the program [44]).

As a good balance between precision and efficiency, we follow
the design of Falcon [44]: points-to facts are tracked path-sensitively
and modularly, where the path conditions are constructed from a
propositional abstraction of the program.

Strong updates in pointer / alias analysis. Strong update [35]
refers to overwriting the existing data flow facts (e.g., the points-to
target) in a flow-sensitive pointer analysis. While crucial for achiev-
ing high precision, enabling strong updates can also significantly
hurt the performance [13, 19, 25, 37] (essentially making the flow
function non-monotone [2]).

In the context of path-sensitive pointer analysis, the concept of
strong update is generalized to accounting for the specific condition
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under which the old fact is invalidated, where all existing works
rely on the formulation of blocking conditions [12, 13, 44]. To the
best of our knowledge, TuNA is the first to tackle the efficiency
problem of performing strong updates in the path-sensitive analysis
for pointer-induced memory dependencies.

Must alias analysis. Must alias analysis has been used to en-
able strong updates to refine the results of a flow- and context-
insensitive may alias analysis, which contributes to improving the
precision of null pointer dereference detection [27], typestate veri-
fication [16], and termination analysis [30]. These works rely on
the conservative may-alias result to determine when strong update
is possible, e.g., must-aliasing is discovered when the points-to set
contains a single memory object. Meanwhile, must-aliasing infor-
mation could be discovered in shape analysis [8] such as in recency
abstraction [4] and the use of three-valued logic [32]. These ap-
proaches distinguish between summary and concrete heap locations
by maintaining logical predicates that could lead to exponential
complexity.

In contrast, our must-alias inference is precise (path-sensitive,
meaning more must-alias pairs are discovered) yet efficient (syntac-
tical equivalence checking based on hash computation), enabling
TuNA to perform strong updates in a path-sensitive data depen-
dence analysis more efficiently.

For analyzing higher-order languages, methods like abstract
counting [29] and singleness inference [17, 20] have been employed
to compute must-aliases, which facilitate advanced compiler opti-
mizations such as closure conversion [29]. These techniques are
flow-sensitive, require the singleness property for abstract objects
to deduce must-aliases (noting that our must alias analysis allows
a variable to reference different memory objects along distinct
paths), and are specifically tailored to address unique challenges
in higher-order languages, such as implicit control flow [20] and
recursion [17]. Consequently, these methods complement our work.

Under-approximate static bug finders. For practical bug find-
ing in large and realistic codebases, static analyzers often sacri-
fices soundness by exploring an under-approximation of the state
space [1, 7, 21, 23, 33]. TuNa follows the same design and our eval-
uation shows that the performance improvement of TuNA is even
more significant when the limitation parameters are more relaxed,
showing its potential for enabling the static analyzer to explore a
larger state space.

7 Conclusion

We present TUNA, a technique that accelerates path-sensitive data
dependence analysis. By identifying must-kill relations between
memory stores, TUNA enables efficient strong updates without
costly path-sensitive reasoning. Evaluation shows TUNA signifi-
cantly outperforms the state of the art in runtime, memory us-
age, and state coverage. The artifact of TUNA is available at https:
//figshare.com/s/0830800e211d5544f9d9?file=52911869.
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